Пирамида - это многогранник, в основании которого лежит многоугольник. Все грани в свою очередь образуют треугольники, которые сходятся в одной вершине. Пирамиды бывают треугольными, четырехугольными и так далее. Для того чтобы определить, какая пирамида перед вами, достаточно посчитать количество углов в ее основании. Определение "высота пирамиды" очень часто встречается в задачах по геометрии в школьной программе. В статье попробуем рассмотреть разные способы ее нахождения.
Видео: Как найти объем четырехугольной пирамиды
Части пирамиды
Каждая пирамида состоит из следующих элементов:
- боковые грани, которые имеют по три угла и сходятся в вершине;
- апофема представляет собой высоту, которая опускается из ее вершины;
- вершина пирамиды – это точка, которая соединяет боковые ребра, но при этом не лежит в плоскости основания;
- основание – это многоугольник, на котором не лежит вершина;
- высота пирамиды представляет собой отрезок, который пересекает вершину пирамиды и образует с ее основанием прямой угол.
Как найти высоту пирамиды, если известен ее объем
Видео: Высота основания правильной треугольной пирамиды
Через формулу объема пирамиды V = (S*h)/3 (в формуле V - объем, S – площадь основания, h - высота пирамиды) находим, что h = (3*V)/S. Для закрепления материала давайте сразу же решим задачу. В треугольной пирамиде площадь основания равна 50 см2, тогда как ее объем составляет 125 см3. Неизвестна высота треугольной пирамиды, которую нам и необходимо найти. Здесь все просто: вставляем данные в нашу формулу. Получаем h = (3*125)/50 = 7,5 см.
Видео: Нахождение высоты правильной четырехугольной пирамиды
Как найти высоту пирамиды, если известна длина диагонали и ее ребра
Как мы помним, высота пирамиды образует с ее основанием прямой угол. А это значит что высота, ребро и половина диагонали вместе образуют прямоугольный треугольник. Многие, конечно же, помнят теорему Пифагора. Зная два измерения, третью величину найти будет несложно. Вспомним известную теорему a = b + c , где а – гипотенуза, а в нашем случае ребро пирамиды- b – первый катет или половина диагонали и с – соответственно, второй катет, или высота пирамиды. Из этой формулы c = a - b .
Теперь задачка: в правильной пирамиде диагональ равна 20 см, когда как длина ребра – 30 см. Необходимо найти высоту. Решаем: c = 30 - 20 = 900-400 = 500. Отсюда с = &radic- 500 = около 22,4.
Как найти высоту усеченной пирамиды
Видео: Шокирующая Новость! Настоящая Тайна Пирамид! HD
Она представляет собой многоугольник, который имеет сечение параллельно ее основанию. Высота усеченной пирамиды – это отрезок, который соединяет два ее основания. Высоту можно найти у правильной пирамиды, если будут известны длины диагоналей обоих оснований, а также ребро пирамиды. Пусть диагональ большего основания равна d1, в то время как диагональ меньшего основания – d2, а ребро имеет длину – l. Чтобы найти высоту, можно с двух верхних противоположных точек диаграммы опустить высоты на ее основание. Мы видим, что у нас получились два прямоугольных треугольника, остается найти длины их катетов. Для этого из большей диагонали вычитаем меньшую и делим на 2. Так мы найдем один катет: а = (d1-d2)/2. После чего по теореме Пифагора нам остается лишь найти второй катет, который и является высотой пирамиды.
Теперь рассмотрим все это дело на практике. Перед нами задача. Усеченная пирамида имеет в основании квадрат, длина диагонали большего основания равняется 10 см, в то время как меньшего – 6 см, а ребро равняется 4 см. Требуется найти высоту. Для начала находим один катет: а = (10-6)/2 = 2 см. Один катет равен 2 см, а гипотенуза – 4 см. Получается, что второй катет или высота будет равна 16-4 = 12, то есть h = &radic-12 = около 3,5 см.