Математика - довольно сложный предмет, но в школьном курсе ее придется пройти абсолютно всем. Особое затруднение у учеников вызывают задачи на движение. Как решать без проблем и массы потраченного времени, рассмотрим в данной статье.
Отметим, что если потренироваться, то эти задания не будут вызывать никаких трудностей. Процесс решения можно выработать до автоматизма.
Разновидности
Что имеется ввиду под таким типом задания? Это довольно-таки простые и нехитрые задачи, которые включают в себя следующие разновидности:
Видео: Видеоурок "Задачи на движение"
- встречное движение;
- вдогонку;
- движение в противоположном направлении;
- движение по реке.
Предлагаем каждый вариант рассмотреть в отдельности. Конечно же, разбирать будем исключительно на примерах. Но прежде, чем перейдем к вопросу, как решать задачи на движение, стоит ввести одну формулу, которая будет нам необходима при решении абсолютно всех заданий этого типа.
Видео: Решение задач. Равноускоренное движение (достаточный уровень)
Формула: S=V*t. Немного пояснений: S - это путь, буквой V обозначается скорость движения, а буква t означает время. Все величины можно выражать через эту формулу. Соответственно, скорость равна пути, разделенному на время, а время - это путь, поделенный на скорость.
Движение навстречу
Это самый распространенный тип задач. Чтобы понять суть решения, рассмотрим следующий пример. Условие: "Два друга на велосипедах отправились одновременно друг другу навстречу, при этом путь от одного дома до другого составляет 100 км. Каково будет расстояние через 120 минут, если известно, что скорость одного - 20 км в час, а второго - пятнадцать". Переходим к вопросу, как решить задачу на встречное движение велосипедистов.
Для этого нам необходимо ввести еще один термин: "скорость сближения". В нашем примере она будет равна 35 км в час (20 км в час + 15 км в час). Это и будет первое действие в решении задачи. Далее умножаем скорость сближения на два, так как они двигались два часа: 35*2=70 км. Мы нашли расстояние, на которое сблизятся велосипедисты через 120 минут. Осталось последнее действие: 100-70=30 километров. Этим вычислением мы нашли расстояние между велосипедистами. Ответ: 30 км.
Если вам непонятно, как решить задачу на встречное движение, используя скорость сближения, то воспользуйтесь еще одним вариантом.
Второй способ
Сначала мы находим путь, который проехал первый велосипедист: 20*2=40 километров. Теперь путь 2-го друга: пятнадцать умножаем на два, что равняется тридцати километрам. Складываем расстояние, пройденное первым и вторым велосипедистом: 40+30=70 километров. Мы узнали, какой путь преодолели они совместно, поэтому осталось из всего пути вычесть пройденный: 100-70=30 км. Ответ: 30 км.
Мы рассмотрели первый тип задачи на движение. Как решать их, теперь понятно, переходим к следующему виду.
Движение в противоположном направлении
Условие: "Из одной норки в противоположном направлении ускакали два зайца. Скорость первого - 40 км в час, а второго - 45 км в час. Как далеко они будут друг от друга через два часа?"
Здесь, как и в предыдущем примере, возможно два варианта решения. В первом мы будем действовать привычным способом:
- Путь первого зайца: 40*2=80 км.
- Путь второго зайца: 45*2=90 км.
- Путь, который они прошли совместно: 80+90=170 км. Ответ: 170 км.
Но возможен и другой вариант.
Скорость удаления
Как вы уже успели догадаться, в этом задании, аналогично первому, появится новый термин. Рассмотрим следующий тип задачи на движение, как решать их с помощью скорости удаления.
Ее мы в первую очередь и найдем: 40+45=85 километров в час. Осталось выяснить, каково расстояние, разделяющее их, поскольку все остальные данные уже известны: 85*2=170 км. Ответ: 170 км. Мы рассмотрели решение задач на движение традиционным способом, а также с помощью скорости сближения и удаления.
Движение вдогонку
Давайте рассмотрим пример задачи и попробуем вместе ее решить. Условие: "Два школьника, Кирилл и Антон, ушли из школы и двигались со скоростью 50 метров в минуту. Костя вышел за ними через шесть минут со скоростью 80 метров в минуту. Через какое количество времени Костя догонит Кирилла и Антона?"
Итак, как решать задачи на движение вдогонку? Здесь нам понадобится скорость сближения. Только в этом случае стоит не складывать, а вычитать: 80-50=30 м в минуту. Вторым действием узнаем, сколько метров разделяет школьников до выхода Кости. Для этого 50*6=300 метров. Последним действием находим время, за которое Костя догонит Кирилла и Антона. Для этого путь 300 метров необходимо разделить на скорость сближения 30 метров в минуту: 300:30=10 минут. Ответ: через 10 минут.
Видео: Методика решения текстовых задач - bezbotvy
Выводы
Исходя из сказанного ранее, можно подвести некоторые итоги:
- при решении задач на движение удобно использовать скорость сближения и удаления;
- если речь идет о встречном движении или движении друг от друга, то эти величины находятся путем сложения скоростей объектов;
- если перед нами задача на движение вдогонку, то употребляем действие, обратное сложению, то есть вычитание.
Мы рассмотрели некоторые задачи на движение, как решать, разобрались, познакомились с понятиями "скорость сближения" и "скорость удаления", осталось рассмотреть последний пункт, а именно: как решать задачи на движение по реке?
Течение
Здесь могут встречаться опять же:
- задачи на движение навстречу друг другу;
- движение вдогонку;
- движение в противоположном направлении.
Но в отличие от предыдущих задач, у реки есть скорость течения, которую не стоит игнорировать. Здесь объекты будут двигаться либо по течению реки - тогда эту скорость стоит прибавить к собственной скорости объектов, либо против течения - ее необходимо вычесть из скорости движения объекта.
Пример задачи на движение по реке
Условие: "Водный мотоцикл шел по течению со скоростью 120 км в час и вернулся обратно, при этом затратил время меньше на два часа, чем против течения. Какова скорость водного мотоцикла в стоячей воде?" Нам дана скорость течения, равная одному километру в час.
Переходим к решению. Предлагаем составить таблицу для наглядного примера. Примем скорость мотоцикла в стоячей воде за х, тогда скорость по течению равна х+1, а против х-1. Расстояние туда и обратно равняется 120 км. Получается, что время, затраченное на движение против течения равно 120:(х-1), а по течению 120:(х+1). При этом известно, что 120:(х-1) на два часа меньше, чем 120:(х+1). Теперь можем переходить к заполнению таблицы.
Видео: Решение текстовых задач на движение
v | t | s | |
по течению | х+1 | 120:(х+1) | 120 |
против течения | х-1 | 120:(х-1) | 120 |
Что мы имеем: (120/(х-1))-2=120/(х+1) Домножим каждую часть на (х+1)(х-1)-
120(х+1)-2(х+1)(х-1)-120(х-1)=0-
Решаем уравнение:
(х^2)=121
Замечаем, что здесь два варианта ответа: +-11, так как и -11 и +11 дают в квадрате 121. Но наш ответ будет положительным, поскольку скорость мотоцикла не может иметь отрицательного значения, следовательно, можно записать ответ: 11 км в час. Таким образом, мы нашли необходимую величину, а именно скорость в стоячей воде.
Мы рассмотрели все возможные варианты задач на движение, теперь при их решении у вас не должно возникать проблем и затруднений. Для их решения необходимо узнать основную формулу и такие понятия, как "скорость сближения и удаления". Наберитесь терпения, отработайте эти задания, и успех придет.