Ряды фурье: история и влияние математического механизма на развитие науки

Видео: История. Введение. От традиционного общества к индустриальному. Центр онлайн-обучения «Фоксфорд»

Ряды Фурье – это представление произвольно взятой функции с конкретным периодом в виде ряда. В общем виде данное решение называют разложением элемента по ортогональному базису. Разложение функций в ряд Фурье является довольно мощным инструментарием при решении разнообразных задач благодаря свойствам данного преобразования при интегрировании, дифференцировании, а также сдвиге выражения по аргументу и свертке.

Человек, не знакомый с высшей математикой, а также с трудами французского ученого Фурье, скорее всего, не поймет, что это за «ряды» и для чего они нужны. А между тем данное преобразование довольно плотно вошло в нашу жизнь. Им пользуются не только математики, но и физики, химики, медики, астрономы, сейсмологи, океанографы и многие другие. Давайте и мы поближе познакомимся с трудами великого французского ученого, сделавшего открытие, опередившее свое время.ряды Фурье

Человек и преобразование Фурье

Ряды Фурье являются одним из методов (наряду с анализом и другими) преобразования Фурье. Данный процесс происходит каждый раз, когда человек слышит какой-либо звук. Наше ухо в автоматическом режиме производит преобразование звуковой волны. Колебательные движения элементарных частиц в упругой среде раскладываются в ряды (по спектру) последовательных значений уровня громкости для тонов разной высоты. Далее мозг превращает эти данные в привычные для нас звуки. Все это происходит помимо нашего желания или сознания, само по себе, а вот для того чтобы понять эти процессы, понадобится несколько лет изучать высшую математику.ряды Фурье

Подробнее о преобразовании Фурье

Преобразование Фурье можно проводить аналитическими, числительными и другими методами. Ряды Фурье относятся к числительному способу разложения любых колебательных процессов – от океанских приливов и световых волн до циклов солнечной (и других астрономических объектов) активности. Используя эти математические приемы, можно разбирать функции, представляя любые колебательные процессы в качестве ряда синусоидальных составляющих, которые переходят от минимума к максимуму и обратно. Преобразование Фурье является функцией, описывающей фазу и амплитуду синусоид, соответствующих определенной частоте. Данный процесс можно использовать для решения весьма сложных уравнений, которые описывают динамические процессы, возникающие под действием тепловой, световой или электрической энергии. Также ряды Фурье позволяют выделять постоянные составляющие в сложных колебательных сигналах, благодаря чему стало возможным правильно интерпретировать полученные экспериментальные наблюдения в медицине, химии и астрономии.ряды Фурье

Историческая справка

Отцом-основателем этой теории является французский математик Жан Батист Жозеф Фурье. Его именем впоследствии и было названо данное преобразование. Изначально ученый применил свой метод для изучения и объяснения механизмов теплопроводности – распространения тепла в твердых телах. Фурье предположил, что изначальное нерегулярное распределение тепловой волны можно разложить на простейшие синусоиды, каждая из которых будет иметь свой температурный минимум и максимум, а также свою фазу. При этом каждая такая компонента будет измеряться от минимума к максимуму и обратно. Математическая функция, которая описывает верхние и нижние пики кривой, а также фазу каждой из гармоник, назвали преобразованием Фурье от выражения распределения температуры. Автор теории свел общую функцию распределения, которая трудно поддается математическому описанию, к весьма удобному в обращении ряду периодических функций косинуса и синуса, в сумме дающих исходное распределение.

Принцип преобразования и взгляды современников




Современники ученого - ведущие математики начала девятнадцатого века - не приняли данную теорию. Основным возражением послужило утверждение Фурье о том, что разрывную функцию, описывающую прямую линию или разрывающуюся кривую, можно представить в виде суммы синусоидальных выражений, которые являются непрерывными. В качестве примера можно рассмотреть «ступеньку» Хевисайда: ее значение равно нулю слева от разрыва и единице справа. Данная функция описывает зависимость электрического тока от временной переменной при замыкании цепи. Современники теории на тот момент никогда не сталкивались с подобной ситуацией, когда разрывное выражение описывалось бы комбинацией непрерывных, обычных функций, таких как экспонента, синусоида, линейная или квадратичная.ряд Фурье в комплексной форме

Что смущало французских математиков в теории Фурье?

Ведь если математик был в прав в своих утверждениях, то, суммируя бесконечный тригонометрический ряд Фурье, можно получить точное представление ступенчатого выражения даже в том случае, если оно имеет множество подобных ступеней. В начале девятнадцатого века подобное утверждение казалось абсурдным. Но несмотря на все сомнения, многие математики расширили сферу изучения данного феномена, выведя его за пределы исследований теплопроводности. Однако большинство ученых продолжали мучиться вопросом: "Может ли сумма синусоидального ряда сходиться к точному значению разрывной функции?"

Видео: Уничтожение школьной системы образования в России - Четверикова

Сходимость рядов Фурье: пример

Вопрос о сходимости поднимается всякий раз при необходимости суммирования бесконечных рядов чисел. Для понимания данного феномена рассмотрим классический пример. Сможете ли вы когда-либо достигнуть стены, если каждый последующий шаг будет вдвое меньше предыдущего? Предположим, что вы находитесь в двух метрах от цели, первый же шаг приближает к отметке на половине пути, следующий – к отметке в три четверти, а после пятого вы преодолеете почти 97 процентов пути. Однако сколько бы вы шагов ни сделали, намеченной цели вы не достигните в строгом математическом смысле. Используя числовые расчеты, можно доказать, что в конце концов можно приблизиться на сколь угодно малое заданное расстояние. Данное доказательство является эквивалентным демонстрации того, что суммарное значение одной второй, одной четвертой и т. д. будет стремиться к единице.ряды Фурье

Вопрос сходимости: второе пришествие, или Прибор лорда Кельвина

Повторно данный вопрос поднялся в конце девятнадцатого века, когда ряды Фурье попробовали применить для предсказания интенсивности отливов и приливов. В это время лордом Кельвином был изобретен прибор, представляющий собой аналоговое вычислительное устройство, которое позволяло морякам военного и торгового флота отслеживать это природное явление. Данный механизм определял наборы фаз и амплитуд по таблице высоты приливов и соответствующих им временных моментов, тщательно замеренных в данной гавани в течение года. Каждый параметр представлял собой синусоидальную компоненту выражения высоты прилива и являлся одной из регулярных составляющих. Результаты измерений вводились в вычислительный прибор лорда Кельвина, синтезирующий кривую, которая предсказывала высоту воды как временную функцию на следующий год. Очень скоро подобные кривые были составлены для всех гаваней мира.

А если процесс будет нарушен разрывной функцией?

В то время представлялось очевидным, что прибор, предсказывающий приливную волну, с большим количеством элементов счета может вычислить большое количество фаз и амплитуд и так обеспечить более точные предсказания. Тем не менее оказалось, что данная закономерность не соблюдается в тех случаях, когда приливное выражение, которое следует синтезировать, содержало резкий скачок, то есть являлось разрывным. В том случае, если в устройство вводятся данные из таблицы временных моментов, то оно производит вычисления нескольких коэффициентов Фурье. Исходная функция восстанавливается благодаря синусоидальным компонентам (в соответствии с найденными коэффициентами). Расхождение между исходным и восстановленным выражением можно измерять в любой точке. При проведении повторных вычислений и сравнений видно, что значение наибольшей ошибки не уменьшается. Однако они локализируются в области, соответствующей точке разрыва, а в любой иной точке стремятся к нулю. В 1899 году этот результат был теоретически подтвержден Джошуа Уиллардом Гиббсом из Йельского университета.ряды Фурье

Видео: Перемещение между временными линиями и вероятности событий — Алексей Самуэль и Давид Ибрагимов

Сходимость рядов Фурье и развитие математики в целом



Анализ Фурье неприменим к выражениям, содержащим бесконечное количество всплесков на определенном интервале. В общем и целом ряды Фурье, если изначальная функция представлена результатом реального физического измерения, всегда сходятся. Вопросы сходимости данного процесса для конкретных классов функций привели к появлению новых разделов в математике, например теории обобщенных функций. Она связана с такими именами, как Л. Шварц, Дж. Микусинский и Дж. Темпл. В рамках данной теории была создана четкая и точная теоретическая основа под такие выражения, как дельта-функция Дирака (она описывает область единой площади, сконцентрированной в бесконечно малой окрестности точки) и «ступень» Хевисайда. Благодаря этой работе ряды Фурье стали применимы для решения уравнений и задач, в которых фигурируют интуитивные понятия: точечный заряд, точечная масса, магнитные диполи, а также сосредоточенная нагрузка на балке.

Метод Фурье

Ряды Фурье, в соответствии с принципами интерференции, начинаются с разложения сложных форм на более простые. Например, изменение теплового потока объясняется его прохождением сквозь различные препятствия из теплоизолирующего материала неправильной формы или изменением поверхности земли – землетрясением, изменением орбиты небесного тела – влиянием планет. Как правило, подобные уравнения, описывающие простые классические системы, элементарно решаются для каждой отдельной волны. Фурье показал, что простые решения также можно суммировать для получения решения более сложных задач. Выражаясь языком математики, ряды Фурье – это методика представления выражения суммой гармоник – косинусоид и синусоид. Поэтому данный анализ известен также под именем «гармонический анализ».

Ряд Фурье – идеальная методика до «компьютерной эпохи»

До создания компьютерной техники методика Фурье являлась лучшим оружием в арсенале ученых при работе с волновой природой нашего мира. Ряд Фурье в комплексной форме позволяет решать не только простые задачи, которые поддаются прямому применению законов механики Ньютона, но и фундаментальные уравнения. Большинство открытий ньютоновской науки девятнадцатого века стали возможны только благодаря методике Фурье.тригонометрический ряд Фурье

Ряды Фурье сегодня

С развитием компьютеров преобразования Фурье поднялись на качественно новый уровень. Данная методика прочно закрепилась практически во всех сферах науки и техники. В качестве примера можно привести цифровой аудио- и видеосигнал. Его реализация стала возможной только благодаря теории, разработанной французским математиком в начале девятнадцатого века. Так, ряд Фурье в комплексной форме позволил совершить прорыв в изучении космического пространства. Кроме того, это повлияло на изучение физики полупроводниковых материалов и плазмы, микроволновой акустики, океанографии, радиолокации, сейсмологии.

Тригонометрический ряд Фурье

В математике ряд Фурье является способом представления произвольных сложных функций суммой более простых. В общих случаях количество таких выражений может быть бесконечным. При этом чем больше их число учитывается при расчете, тем точнее получается конечный результат. Чаще всего в качестве простейших используют тригонометрические функции косинуса или синуса. В таком случае ряды Фурье называют тригонометрическими, а решение таких выражений – разложением гармоники. Этот метод играет важную роль в математике. Прежде всего, тригонометрический ряд дает средства для изображения, а также изучения функций, он является основным аппаратом теории. Кроме того, он позволяет решать ряд задач математической физики. Наконец, данная теория способствовала развитию математического анализа, вызвала к жизни целый ряд весьма важных разделов математической науки (теорию интегралов, теорию периодических функций). Кроме того, послужила отправным пунктом для развития следующих теорий: множеств, функций действительного переменного, функционального анализа, а также положила начало гармоническому анализу.



Внимание, только СЕГОДНЯ!


Поделись в соцсетях:
Оцени статью:


Похожее
» » » Ряды фурье: история и влияние математического механизма на развитие науки