В этой статье приведена формула Вульфа-Брегга, изучено ее значение для современного мира. Описаны методы исследования вещества, которые стали возможны благодаря открытию дифракции электронов на твердых телах.
Наука и конфликты
О том, что разные поколения не понимают друг друга, писал еще Тургенев в романе «Отцы и дети». И правда, бывает так: живет семья сотню лет, дети уважают старших, все друг друга поддерживают, а потом раз – и все меняется. А все дело в науке. Недаром католическая церковь так противилась развитию естественного знания: любой шаг может привести к неконтролируемому изменению мира. Одно открытие меняет представление о гигиене, и вот уже старики с удивлением взирают, как их отпрыски моют перед едой руки и чистят зубы. Бабушки неодобрительно качают головой: «Зачем, жили же и без этого, и ничего, по двадцать детей рожали. А вся эта ваша чистота только во вред и от лукавого».
Одно предположение о расположении планет – и вот уже на каждом углу молодые образованные люди обсуждают спутники и метеоры, подзорные трубы и природу Млечного пути, тогда как старшее поколение недовольно: «Глупости всякие, что толку от космоса и небесных сфер, какая разница, как вращается Марс и Венера, шли бы лучше картошку выращивали, все было бы больше пользы».
Один прорыв в технологии, который стал возможен благодаря тому, что известна дифракция на пространственной решетке, – и в каждом втором кармане лежит смартфон. При этом пожилые люди ворчат: «Ничего хорошего в этих быстрых сообщениях нет, они не то, что настоящие письма». Однако, как ни парадоксально это звучит, обладатели разнообразных гаджетов воспринимают их как некую данность, чуть ли не как воздух. И мало кто задумывается о механизмах их работы и том огромном пути, который проделала человеческая мысль за какие-то двести-триста лет.
На заре двадцатого века
В конце девятнадцатого века человечество столкнулось с проблемой изученности всех открытых явлений. Считалось, что в физике уже все известно, и остается только выяснять подробности. Однако открытие Планком квантов и дискретности состояний микромира в буквальном смысле перевернуло прежние представления о строении материи.
Открытия сыпались одни за другими, исследователи выхватывали идеи друг у друга из рук. Гипотезы возникали, проверялись, обсуждались, отвергались. Один решенный вопрос порождал сотню новых, и находилось множество людей, готовых искать ответы.
Одним из поворотных моментов, которые изменили представление о мире, стало открытие двойственной природы элементарных частиц. Без него формула Вульфа-Брэгга не появилась бы. Так называемый корпускулярно-волновой дуализм объяснил, почему в одних случаях электрон ведет себя как тело, обладающее массой (то есть корпускула, частица), а в других – как бесплотная волна. Ученые долго спорили, пока не пришли к выводу – такими разными свойствами объекты микромира обладают одновременно.
В данной статье описывается закон Вульфа-Брэгга, а значит, нас интересуют волновые свойства элементарных частиц. Для специалиста эти вопросы всегда неоднозначны, ведь преодолевая порог размеров порядка нанометров, мы теряем определенность – вступает в силу принцип Гейзенберга. Однако для большинства задач хватает достаточно грубого приближения. Поэтому необходимо для начала пояснить некоторые особенности сложения и вычитания обычных волн, которые достаточно просто представить и понять.
Волны и синусы
Мало кто в детстве любил такой раздел алгебры, как тригонометрия. Синусы и косинусы, тангенсы и котангенсы обладают своей системой сложения, вычитания и других преобразований. Возможно, детям это непонятно, поэтому изучать неинтересно. И многие задавались вопросом о том, зачем вообще это все нужно, в какой части обычной жизни данные знания можно применить.
Все зависит от того, насколько любознателен человек. Кому-то хватает знаний типа: солнце светит днем, луна ночью, вода мокрая, а камень твердый. Но есть и такие, кому интересно, как устроено все, что человек видит. Для неутомимых исследователей и поясняем: наибольшую пользу от изучения волновых свойств извлекает, как ни странно, физика элементарных частиц. Например, дифракция электронов подчиняется именно этим законам.
Для начала поработайте над воображением: закройте глаза и дайте волне увлечь себя.
Представьте бесконечную синусоиду: выпуклость, ложбинка, выпуклость, ложбинка. Ничто в ней не меняется, расстояние от вершины одного бархана до другого такое же, как и везде. Наклон линии, когда она идет от максимума к минимуму, одинаков для каждого участка этой кривой. Если есть рядом две одинаковые синусоиды, то задача усложняется. Дифракция на пространственной решетке непосредственно зависит от сложения нескольких волн. Законы их взаимодействия зависят от нескольких факторов.
Первый – фаза. То, какими частями соприкасаются эти две кривые. Если максимумы их совпадают до последнего миллиметра, если углы наклона кривых идентичны – все показатели удваиваются, горбы становятся в два раза выше, а ложбины – в два раза глубже. Если наоборот – максимум одной кривой попадает на минимум другой, то волны гасят друг друга, все колебания превращаются в ноль. А если фазы не совпадают только частично – то есть максимум одной кривой приходится на подъем или понижение другой, то картина становится совсем сложной. Вообще, формула Вульфа-Брэгга содержит только угол, как станет видно позже. Однако правила взаимодействия волн помогут осознать ее вывод более полно.
Второй – амплитуда. Это высота горбов и ложбин. Если у одной кривой высота один сантиметр, а у другой – два, то складывать их надо соответственно. То есть если максимум волны высотой два сантиметра попадает строго на минимум волны с высотой один сантиметр, то они не гасят друг друга, а только уменьшается высота возмущений первой волны. Например, дифракция электронов зависит от амплитуды их колебаний, которая определяет их энергию.
Видео: Дифракция света
Третий – частота. Это расстояние между двумя одинаковыми точками кривой, например, максимумами или минимумами. Если частоты разные, то в какой-то момент у двух кривых максимумы совпадают, соответственно, полностью складываются. Уже на следующем периоде этого не происходит, итоговый максимум становится все ниже и ниже. Затем максимум одной волны попадает строго на минимум другой, давая наименьший результат при таком наложении. Результат, как вы понимаете, будет тоже очень сложным, но периодическим. Картинка рано или поздно повторится, и снова совпадут два максимума. Таким образом, при наложении волн с разной частотой возникнет новое колебание с переменной амплитудой.
Четвертый – направление. Обычно, когда рассматривают две одинаковые волны (в нашем случае синусоиды), считается, что они автоматически параллельны друг другу. Однако в реальном мире все иначе, направление может быть любым в пределах трехмерного пространства. Таким образом, складываться или вычитаться будут только волны, идущие параллельно. Если они движутся в разные стороны, взаимодействия между ними не происходит. Закон Вульфа-Брэгга стоит именно на том, что складываются только параллельные пучки.
Интерференция и дифракция
Однако электромагнитное излучение – это не совсем синусоида. Принцип Гюйгенса гласит, что каждая точка среды, до которой дошел фронт волны (или возмущение), является источником вторичных сферических волн. Таким образом, в каждое мгновение распространения, скажем, света волны все время накладываются друг на друга. Это и есть интерференция.
Данное явление становится причиной того, что свет в частности и электромагнитные волны вообще способны огибать препятствия. Последний факт называется дифракцией. Если читатель не помнит это со школы, мы подскажем, что две щели в темном экране, освещенные обычным белым светом, дают сложную систему максимумов и минимумов освещенности, то есть полосок будет не две одинаковых, а много и разной интенсивности.
Если облучать полоски не светом, а бомбардировать вполне себе телесными электронами (или, допустим, альфа-частицами), то получается точно такая же картина. Электроны интерферируют и дифрагируют. Именно в этом проявляется их волновая природа. Надо отметить, что дифракция Вульфа-Брэгга (чаще всего называемая просто брэгговской) состоит в сильном рассеянии волн на периодических решетках при совпадении фазы падающей и рассеянной волны.
Твердое тело
С этим словосочетанием у каждого могут быть свои ассоциации. Однако твердое тело – вполне определенный раздел физики, который изучает структуру и свойства кристаллов, стекол и керамик. Изложенное ниже известно только благодаря тому, что когда-то ученые разработали основы рентгеноструктурного анализа.
Итак, кристалл – это такое состояние вещества, когда ядра атомов занимают строго определенное положение в пространстве относительно друг друга, а свободные электроны, как и электронные оболочки, обобщаются. Основная характеристика твердого тела – периодичность. Если читатель когда-то интересовался физикой или химией, наверняка в его голове всплывает образ кристаллической решетки поваренной соли (название минерала – галит, формула NaCl).
Два вида атомов очень тесно соприкасаются, образуя достаточно плотную структуру. Натрий и хлор перемежаются, образуя во всех трех измерениях кубическую решетку, стороны которой перпендикулярны друг другу. Таким образом, период (или элементарная ячейка) – это кубик, в котором три вершины составляют атомы одного вида, остальные три – другого. Приставляя друг к другу такие кубики, можно получить бесконечный кристалл. Все атомы, расположенные в пределах двух измерений, периодически составляют кристаллографические плоскости. То есть элементарная ячейка трехмерная, но одна из сторон, повторенная много раз (в идеальном случае – бесконечное количество раз), формирует отдельную поверхность в кристалле. Этих поверхностей очень много, и они идут параллельно друг другу.
Межплоскостное расстояние – важный показатель, который определяет, например, прочность твердого тела. Если в двух измерениях это расстояние маленькое, а в третьем – большое, то вещество легко слоится. Это характеризует, например, слюду, которая раньше заменяла людям стекло в окнах.
Кристаллы и минералы
Однако каменная соль – очень простой пример: всего два вида атомов и понятная кубическая симметрия. Раздел геологии, который называется минералогией, изучает кристаллические тела. Их особенность в том, что одна химическая формула включает 10-11 видов атомов. А уж структура у них невероятно сложна: тетраэдры, соединяясь с кубами вершинами под разными углами, образуют пористые каналы разных форм, островки, сложные шахматные или зигзагообразные соединения. Таково, например, строение невероятно красивого, достаточно редкого и чисто русского поделочного камня чароита. Его фиолетовые узоры настолько прекрасны, что способны вскружить голову – отсюда и название минерала. Но даже в самой запутанной структуре присутствуют параллельные друг другу кристаллографические плоскости.
А это позволяет благодаря наличию явления дифракции электронов на кристаллической решетке выявить их строение.
Структура и электроны
Чтобы адекватно описать методы исследования структуры вещества, основанные на дифракции электронов, можно представить, что мячи бросают внутрь коробки. А потом подсчитывают, сколько мячей отскочило назад и под какими углами. Затем по направлениям, в которые отскакивает большинство мячей, судят о форме коробки.
Конечно, это приблизительное представление. Но согласно этой грубой модели, направление, в котором отскакивает наибольшее количество мячей – это дифракционный максимум. Итак, электроны (или рентгеновские лучи) бомбардируют поверхность кристалла. Какие-то из них «застревают» в веществе, но другие отражаются. Причем отражаются они только от кристаллографических плоскостей. Так как плоскость не одна, а их много, то складываются только отраженные волны, параллельные друг другу (мы обсуждали это выше). Таким образом получается сигнал в виде спектра, где интенсивность отражения зависит от угла падения. Дифракционный максимум показывает наличие плоскости под изучаемым углом. Получившуюся картину анализируют, чтобы получить точную структуру кристалла.
Формула
Анализ производится по определенным законам. В их основе лежит формула Вульфа-Брэгга. Она выглядит так:
2d sin&theta- = n&lambda-, где:
- d – межплоскостное расстояние;
- &theta- – угол скольжения (угол, дополнительный к углу отражения);
- n – порядок дифракционного максимума (целое положительное число, т.е. 1, 2, 3…);
- &lambda- – длина волны падающего излучения.
Как читатель видит, даже угол берется не тот, который был получен непосредственно при исследовании, а дополнительный к нему. Стоит отдельно пояснить про величину n, которая относится к понятию «дифракционный максимум». Формула интерференции также содержит целое положительное число, которое определяет, какого порядка максимум наблюдается.
Освещенность экрана в опыте с двумя щелями, например, зависит от косинуса разности хода. Так как косинус - функция периодическая, то после темного экрана в данном случае наблюдается не только главный максимум, но и несколько более тусклых полос по его сторонам. Живи мы в идеальном мире, который полностью поддается математическим формулам, таких полос было бы бесконечное число. Однако в реальности количество наблюдаемых светлых областей всегда ограничено, и зависит от длины волны, ширины щелей, расстояния между ними и яркости источника.
Так как дифракция – непосредственное следствие волновой природы света и элементарных частиц, то есть наличия у них интерференции, то и формула Вульфа-Брэгга содержит порядок дифракционного максимума. Кстати, этот факт поначалу сильно затруднял расчеты экспериментаторов. На данный момент все преобразования, связанные с разворотами плоскостей и вычислением оптимальной структуры по дифракционным картинам, выполняют машины. Они же просчитывают, какие именно пики являются самостоятельными явлениями, а какие – вторыми или третьими порядками основных линий на спектрах.
До введения в оборот компьютеров с простым интерфейсом (относительно простым, так как программы для разнообразных расчетов - все-таки сложные инструменты) все это делалось вручную. И несмотря на относительную лаконичность, которой обладает уравнение Вульфа-Брэгга, на то, чтобы удостовериться в истинности полученных значений, уходило много времени и усилий. Ученые проверяли и перепроверяли – не затесалось ли где какого-нибудь неглавного максимума, который мог бы испортить расчеты.
Теория и практика
Замечательное открытие, совершенное одновременно Вульфом и Брэггом, дало в руки человечества незаменимый инструмент для исследования скрытых до того структур твердых тел. Однако, как известно, теория – вещь хорошая, но на практике все всегда оказывается немного иначе. Чуть выше речь шла о кристаллах. Но любая теория имеет в виду идеальный случай. То есть бесконечное бездефектное пространство, в котором законы повторения структуры не нарушаются.
Однако реальные, даже очень чистые и выращенные в лабораториях, кристаллические вещества изобилуют дефектами. Среди природных образований встретить идеальный образец – большая удача. Условие Вульфа-Брэгга (выражаемое приведенной выше формулой) в ста процентах случаев применяется к реальным кристаллам. Для них в любом случае существует такой дефект, как поверхность. И пусть читателя не смущает некоторая несуразность данного высказывания: поверхность является не только источником дефектов, но и сама дефект.
Например, энергия связей, образующихся внутри кристалла, отличается от аналогичного значения приграничных зон. Это значит, что надо вводить вероятности и своеобразные зазоры. То есть, когда экспериментаторы снимают спектр отражения электронов или рентгеновских лучей от твердого тела, они получают не просто величину угла, а угол с погрешностью. Например, &theta- = 25 ± 0.5 градусов. На графике это выражается в том, что дифракционный максимум (формула которого и заключается в уравнении Вульфа-Брэгга) имеет некоторую ширину, и представляет собой полосу, а не идеально тонкую линию строго на месте полученного значения.
Мифы и погрешности
Так что же получается, все, полученное учеными, неправда?! В некоторой степени. Когда вы измеряете себе температуру и обнаруживаете 37 на градуснике, это тоже не совсем точно. Температура вашего тела отличается от строгого значения. Но для вас главное, что она ненормальная, что вы заболели и пора лечиться. И вам, и вашему врачу совершенно неважно, что на самом деле градусник показал 37.029.
Так и в науке – до тех пор, пока погрешность не мешает делать однозначные выводы, она учитывается, но упор делается на основное значение. К тому же статистика показывает: пока ошибка меньше пяти процентов, ею можно пренебречь. Результаты, полученные в экспериментах, для которых соблюдается условие Вульфа-Брэгга, также имеют погрешность. Ученые, которые делают вычисления, ее, как правило, указывают. Однако для конкретного применения, другими словами, понимания того, какова структура того или иного кристалла, погрешность не очень важна (до тех пор, пока она небольшая).
Стоит отметить, что у каждого прибора, даже у школьной линейки, всегда есть погрешность. Этот показатель учитывается в измерениях, и в случае необходимости входит в общую ошибку результата.