Видео: Лекция 7 Законы Кеплера. Момент инерции относительно оси
Одним из основных физических принципов взаимодействия твердых тел является закон инерции, сформулированный еще великим Исааком Ньютоном. С этим понятием мы сталкиваемся практически постоянно, так как оно оказывает чрезвычайно большое влияние на все материальные предметы нашего мира, в том числе и на человека. В свою очередь, такая физическая величина, как момент инерции, неразрывно связана с упомянутым выше законом, определяя силу и продолжительность его воздействия на твердые тела.
Видео: Центр масс и момент инерции
С точки зрения механики любой материальный объект можно описать как неизменную и четко структурированную (идеализированную) систему точек, взаимные расстояния между которыми не изменяются в зависимости от характера их движения. Такой подход позволяет точно вычислять по специальным формулам момент инерции практически всех твердых тел. Еще одним интересным нюансом здесь является то, что любое сложное, имеющее самую замысловатую траекторию, движение можно представить в виде совокупности простых перемещений в пространстве: вращательного и поступательного. Это тоже значительно облегчает жизнь физикам при вычислении данной физической величины.
Понять, что же такое момент инерции и каково его влияние на окружающий нас мир, легче всего на примере резкого изменения скорости пассажирского транспортного средства (торможения). В этом случае ноги стоящего пассажира трение о пол увлечет за собой. Но при этом на туловище и голову никакого воздействия оказано не будет, вследствие чего они какое-то время будут продолжать движение с прежней заданной скоростью. В итоге пассажир наклонится вперед или упадет. Иными словами, момент инерции ног, погашенный силой трения о пол, будет значительно меньше, чем остальных точек тела. Противоположная картина будет наблюдаться при резком увеличении скорости автобуса или трамвайного вагона.
Момент инерции можно сформулировать как физическую величину, равную сумме произведений элементарных масс (тех самых отдельных точек твердого тела) на квадрат их удаленности от оси вращения. Из данного определения следует, что эта характеристика является величиной аддитивной. Проще говоря, момент инерции материального тела равен сумме аналогичных показателей его частей: J = J1 + J2 + J3 +…
Данный показатель для тел сложной геометрии находится экспериментальным путем. Приходится учитывать слишком много различных физических параметров, включая плотность объекта, которая может быть неоднородной в разных его точках, что создает так называемую разницу масс в различных сегментах тела. Соответственно, и стандартные формулы здесь не подходят. Например, момент инерции кольца с определенным радиусом и однородной плотностью, имеющего ось вращения, которая проходит через его центр, можно рассчитать по следующей формуле: J = mR2. Но таким способом не получится вычислить данную величину для обруча, все части которого изготовлены из разных материалов.
А момент инерции шара сплошной и однородной структуры можно рассчитать по формуле: J = 2/5mR2. При вычислении данного показателя для тел относительно двух параллельных осей вращения в формулу вводится дополнительный параметр – расстояние между осями, обозначаемое литерой а. Вторая ось вращения обозначается при этом буквой L. Например, формула может иметь следующий вид: J = L + ma2.
Тщательные опыты по изучению инерционного движения тел и характера их взаимодействия впервые были произведены Галилео Галилеем на стыке шестнадцатого и семнадцатого веков. Они позволили великому ученому, опередившему свое время, установить основной закон о сохранении физическими телами состояния покоя или прямолинейного движения относительно Земли при отсутствии воздействия на них других тел. Закон инерции стал первым шагом в установлении основных физических принципов механики, в то время еще совершенно смутных, невнятных и неясных. Впоследствии Ньютон, формулируя общие законы движения тел, включил в их число и закон инерции.