Видео: Водородная связь, краткое определение
Что такое водородная связь? Известный всем пример этой связи представляет обычная вода (H2O). Из-за того, что атом кислорода (О) более электроотрицателен, чем два атома водорода (Н), он как бы оттягивает от атомов водорода связывающие электроны. В результате создания такой ковалентной полярной связи образуется диполь. Кислородный атом приобретает не очень большой заряд отрицательный, а водородные атомы – небольшой положительный заряд, который притягивается к электронам (их неподеленной паре) на кислородном атоме соседней молекулы Н2О (то есть воды). Таким образом, можно сказать, что водородная связь – это образующаяся сила притяжения между водородным атомом и электроотрицательным атомом. Важной особенностью водородного атома является то, что при притяжении его связующих электронов оголяется его ядро (то есть протон, другими электронами не экранированный). И хотя водородная связь более слабее, чем ковалентная, именно она обуславливает целых ряд аномальный свойств Н2О (воды).
Чаще всего эта связь образуется с участием атомов следующих элементов: кислород (О), азот (N) и фтор (F). Это происходит по той причине, что атомы данных элементов имеют малые размеры и характеризуются высокой электроотрицательностью. С атомами размера большего (сера S или хлор Cl) образующаяся водородная связь слабее, несмотря на то, что по своей электроотрицательности эти элементы сравнимы с N (то есть с азотом).
Существует два типа водородной связи:
1. Водородная межмолекулярная связь – появляется между двумя молекулами, например: метанол, аммиак, фтороводород.
2. Водородная связь внутримолекулярная – появляется внутри одной молекулы, например: 2-нитрофенол.
Также в настоящее время есть мнение, что водородная химическая связь бывает слабой и сильной. Они отличаются друг от друга по энергии и длине связи (расстояние между атомами):
1. Водородные связи слабые. Энергия – 10-30 кДж/моль, длина связи – 30. Все вещества, перечисленные выше, являются примерами нормальной или слабой водородной связи.
2. Водородные связи сильные. Энергия – 400 кДж/моль, длина – 23-24. Данные, полученные экспериментальным путем, свидетельствуют о том, что сильные связи образуются в следующих ионах: ион-водороддифторид [F-H-F]-, ион-гидратированный гидроксид [HO-H-OH]-, ион оксония гидратированный [H2O-H-OH2]+, а также в различных других органических и неорганических соединениях.
Влияние водородных межмолекулярных связей
Аномальные значения температур кипения и плавления, энтальпии испарения и поверхностного натяжения некоторых соединений можно объяснить наличием связей водородных. Вода имеет аномальные значения всех перечисленных свойств, а фтороводород и аммиак – температуры кипения и плавления. Вода и фтороводород в твердом и жидком состояниях из-за наличия в них водородных межмолекулярных связей считаются полимеризованными. Данная связь объясняет не только слишком высокую температуру плавления данных веществ, но также и их малую плотность. Причем при плавлении водородная связь частично разрушается, из-за чего молекулы воды (Н2О) упаковываются более плотно.
Димеризацию некоторых веществ (карбоновые кислоты, например, бензойная и уксусная) можно также объяснить наличием в них связи водородной. Димер – это две молекулы, которые связаны между собой. По этой причине температура кипения карбоновых кислот выше, чем у соединений, имеющих приблизительно такую же молекулярную массу. Например, у кислоты уксусной (СН3СООН) температура кипения равна 391 К, в то время как у ацетона (СН3СОСН3) она равна 329 К.
Влияние водородных внутримолекулярных связей
Эта связь тоже влияет на структуру и свойства различных соединений, таких как: 2- и 4-нитрофенол. Но наиболее известный и важный пример водородной связи – это дезоксирибонуклеиновая кислота (сокр.: ДНК). Молекулы этой кислоты свернуты в виде двойной спирали, две нити которой соединены между собой водородной связью.