Широкий спектр отношений на примере множеств сопровождается большим числом понятий, начиная с их определений и заканчивая аналитическим разбором парадоксов. Разнообразие обсуждаемого в статье понятия на множестве бесконечно. Хотя, когда говорят про двойственные типы, под этим подразумеваются бинарные отношения между несколькими величинами. А также между объектами или высказываниями.
Как правило, бинарные отношения обозначаются символом R, то есть, если xRx для любого значения x из поля R, такое свойство называют рефлексивным, в котором x и х – это принятые объекты мысли, а R служит знаком о том или ином виде взаимосвязи между индивидами. В то же время если выражать xRy® или yRx, то это говорит о состоянии симметрии, где ® - знак импликации, похожий на союз «если..., то...". И, наконец, расшифровка надписи (xRy y Rz) ®xRz расскажет о транзитивной взаимосвязи, причём знак – это конъюнкция.
Бинарное отношение, которое бывает одновременно рефлексивным, симметричным и транзитивным, именуется взаимосвязью эквивалентности. Отношение f – это функция, и из <х, у> f и <х, z> f вытекает равность y=z. Простая бинарная функция может быть легко применима к двум несложным аргументам, расположенным в определённом порядке, и лишь в данном случае она предоставляет ей значение, направленное этим двум выражениям, взятым в конкретном случае.
Видео: Лекция 1. Теория множеств
Следует говорить, что f отображает x на y, если f служит функцией с зоной определения x и зоной значений y. Однако когда f экстраполирует x на y, и y z, то это приводит к тому, что f показывает x в z. Простой пример: если f(x)=2x справедливо для достоверно любого целого х, то говорят, что f отображает знаковое множество всех известных целых чисел во множество тех же целых, но на этот раз чётных чисел. Как уже упоминалось выше, бинарные отношения, которые одновременно рефлексивны, симметричны и транзитивны, являются взаимосвязями эквивалентности.
Исходя из вышесказанного, взаимосвязи эквивалентности бинарных отношений определяются свойствами:
- рефлексивности - соотношение (M ~ N);
- симметричности - если равность M ~ N, то будет N ~ M;
- транзитивности - если две равности M ~ N и N ~ P, то в результате M ~ P.
Рассмотрим заявленные свойства бинарных отношений подробнее. Рефлексивность - это одна из характеристик некоторых связей, где каждый элемент исследуемого множества пребывает в данной равности сам себе. Например, между числами а=с и а³- с - рефлексивные связи, поскольку всегда а=а, с=с, а³- а, с³- с. В то же время отношение неравенства а>с - антирефлексивно из-за невозможности существования неравенства а>а. Аксиома этого свойства кодируется знаками: aRc® aRa cRc , здесь символ ® означает слово "влечёт" (или "имплицирует"), а знак – выступает союзом "и" (или конъюнкцией). Из этого утверждения следует, что в случае истинности суждения aRc также истинны и выражения aRa и cRc.
Видео: Матрица бинарных отношений (МБО)
Симметричность влечёт за собой наличие отношения и в том случае, если мыслительные объекты поменять местами, то есть при симметричной взаимосвязи перестановка объектов не приводит к трансформации вида "бинарные отношения". Например, связь равенства а=с симметрична по причине эквивалентности отношения с=а- также одинаково и суждение а¹-с, так как оно отвечает связи с¹-а.
Транзитивное множество - это такое свойство, при котором выполняется следующее требование: у х, z y ® z x, где ® выступает знаком, заменяющим слова: "если ..., то ...". Вербально читается формула таким образом: «Если у зависит от х, z принадлежит у, то z также зависит от х".