Для многих даже спустя годы после окончания школы остается неизвестным, какова же на самом деле скорость звука в воздухе. Кто-то невнимательно слушал преподавателя, а кто-то просто не до конца понял излагаемый материал. Что ж, быть может, настало время восполнить этот пробел в знаниях. Сегодня мы не просто укажем «сухие» цифры, а поясним сам механизм, определяющий скорость звука в воздухе.
Видео: Реактивные самолеты преодолевают звуковой барьер
Как известно, воздух представляет собой совокупность различных газов. Немногим более 78% приходится на азот, почти 21% занимает кислород, оставшаяся часть представлена углекислым и инертными газами. Следовательно, речь пойдет о скорости распространения звука в газовой среде.
Сначала давайте определимся, что такое звук. Наверняка многие слышали высказывание «звуковые волны» или «звуковые колебания». Действительно, например, диффузор звуковоспроизводящей колонки колеблется с определенной частотой, которая классифицируется слуховым аппаратом человека как звук. Один из законов физики гласит, что давление в газах и жидкостях распространяется без изменения во всех направлениях. Отсюда следует, что в идеальных условиях скорость звука в газах равномерна. Разумеется, в действительности имеет место ее естественное затухание. Нужно запомнить эту особенность, так как именно она объясняет, почему скорость может изменяться. Но это мы немного отвлеклись от главной темы. Итак, если звук – это колебания, то что именно колеблется?
Любой газ – это совокупность атомов определенной конфигурации. В отличие от твердых тел, между атомами в них относительно большое расстояние (по сравнению, например, с кристаллической решеткой металлов). Можно привести аналогию с горошинами, распределенными по емкости с желеобразной массой. Источник звуковых колебаний сообщает импульс движения ближайшим атомам газа. Они в свою очередь, подобно шарам на бильярдном столе, «ударяют» по соседним, и процесс повторяется. Скорость звука в воздухе как раз и определяет интенсивность импульса-первопричины. Но это лишь одна составляющая. Чем плотнее расположены атомы вещества, тем выше скорость распространения звука в нем. К примеру, скорость звука в воздухе почти в 10 раз меньше, чем в монолитном граните. Это очень легко понять: чтобы атом в газе мог «долететь» до соседнего и передать ему энергию импульса, ему необходимо преодолеть определенное расстояние.
Следствие: с увеличением температуры скорость распространения волн повышается. Несмотря на тепловое расширение, собственная скорость атомов выше, они хаотично двигаются и чаще соударяются. Также верно, что сжатый газ проводит звук намного быстрее, но чемпионом все-таки является сжиженное агрегатное состояние. В расчетах скорости звука в газах учитываются начальная плотность, сжимаемость, температура и коэффициент (газовая постоянная). Собственно, все это следует из вышесказанного.
Видео: НТЦ-22.05.10 "Определение скорости звука в воздухе"
Все-таки какова скорость звука в воздухе? Многие уже догадались, что невозможно дать однозначный ответ. Приведем лишь некоторые основные данные:
– при нуле градусов Цельсия на нулевой точке (уровень моря) скорость звука составляет около 331 м/с-
Видео: Скорость звука в воздухе = 343м/с
– снизив температуру до – 20 градусов Цельсия, можно «замедлить» звуковые волны до 319 м/с, так как изначально атомы в пространстве движутся медленнее-
– повышение же ее до 500 градусов ускоряет распространение звука почти в полтора раза – до 550 м/с.
Видео: Решение задачи по теме: Колебание и волны № 360 из сборника Бендрикова Г.А. Урок 152
Однако приведенные данные ориентировочны, так как кроме температуры на способность газов проводить звук влияет также давление, конфигурация пространства (помещение с предметами или открытая площадь), собственная подвижность и т.д.
В настоящее время свойство атмосферы проводить звук активно исследуется. К примеру, один из проектов позволяет посредством регистрации отраженного звукового сигнала (эха) определять температуру слоев воздуха.