В 1820 году выдающийся французский физик Андре Мари Ампер (именно в его честь названа единица измерения электрического тока) сформулировал один из основополагающих законов всей электротехники. Впоследствии за этим законом закрепилось название сила ампера.
Видео: Сила ампера
Как известно, при прохождении по проводнику электрического тока вокруг него возникает свое собственное (вторичное) магнитное поле, линии напряженности которого формируют своеобразную вращающуюся оболочку. Направление этих линий магнитной индукции определяют с помощью правила правой руки (второе название "правило буравчика"): мысленно обхватываем правой рукой проводник так, чтобы течение заряженных частиц совпадало с направлением, указываемым отогнутым большим пальцем. В результате другие четыре пальца, обхватывающие провод, укажут на вращение поля.
Если расположить параллельно два таких проводника (тонких провода), то на взаимодействие их магнитных полей будет влиять сила ампера. В зависимости от направления тока в каждом проводнике, они могут отталкиваться или притягиваться. При токах, текущих в одном направлении, сила ампера оказывает на них притягивающее действие. Соответственно, противоположное направление токов вызывает отталкивание. В этом нет ничего удивительного: хотя одноименные заряды отталкиваются, в данном примере взаимодействуют не сами заряды, а магнитные поля. Так как направление их вращения совпадает, то итоговое поле представляет собой векторную сумму, а не разность.
Другими словами, магнитное поле определенным образом воздействует на проводник, пересекающий линии напряженности. Сила ампера (произвольная форма проводника) определяется из формулы закона:
dF=B*I*L*sin a-
где - I - значение силы тока в проводнике- B - индукция магнитного поля, в котором размещается проводящий ток материал- L - взятый для расчетов длины проводника с током (причем, в данном случае считается, что длина проводника и сила стремятся к нулю)- альфа (а) - векторный угол между направлением движения заряженных элементарных частиц и линиями напряженности внешнего поля. Следствие следующее: когда угол между векторами составляет 90 градусов его sin = 1, а значение силы максимально.
Векторное направление действия силы ампера определяют посредством правила левой руки: мысленно размещаем ладонь левой руки таким образом, чтобы линии (векторы) магнитной индукции внешнего поля входили в раскрытую ладонь, а остальные четыре выпрямленных пальца указывали направление, в котором движется ток в проводнике. Тогда большой палец, отогнутый под углом 90 градусов, покажет направление действующей на проводник силы. Если угол между вектором электрического тока и произвольной линией индукции слишком мал, то для упрощения применения правила в ладонь должен входить не сам вектор индукции, а модуль.
Видео: Что такое сила Ампера
Применение силы ампера дало возможность создать электродвигатели. Все мы привыкли к тому, что достаточно щелкнуть выключателем электрического бытового прибора, оснащенного двигателем, чтобы его исполнительный механизм пришел в действие. А о процессах, происходящих при этом, никто особо не задумывается. Направление силы ампера не только объясняет принцип работы двигателей, но и позволяет определить, куда именно будет направлен вращающий момент.
Для примера представим двигатель постоянного тока: его якорь - это каркас-основа с обмоткой. Внешнее магнитное поле создается специальными полюсами. Так как обмотка, намотанная на якорь, круговая, то с противоположных его сторон направление тока на участках проводника встречно. Следовательно, вектора действия силы ампера также встречны. Так как якорь закреплен на подшипниках, то взаимное действие векторов силы ампера создает вращающий момент. С ростом действующего значения тока увеличивается и сила. Именно поэтому номинальный электрический ток (указан в паспорте на электрооборудование) и вращающий момент непосредственно взаимосвязаны. Увеличение тока ограничивается конструктивными особенностями: сечением использованного для обмотки провода, количеством витков и пр.