Молекула ДНК – это полинуклеотид, мономерными единицами которого служат четыре дезоксирибонуклеотида (дАМФ, дГМФ, дЦМФ и дТМФ). Соотношение и последовательность этих нуклеотидов в ДНК разных организмов различны. Кроме главных азотистых оснований в ДНК содержатся и другие дезоксирибонуклеотиды с минорными основаниями: 5-метилцитозин, 5-оксиметилцитозин, 6-метиламинопурин.
После того как появилась возможность использования метода рентгеновской кристаллографии для изучения биологических макромолекул и получения совершенных рентгенограмм, удалось выяснить молекулярную структуру ДНК. Указанный метод основан на том, что пучок параллельных рентгеновских лучей, падающих на кристаллическое скопление атомов, образует дифракционную картину, которая в основном зависит от атомной массы этих атомов, их расположения в пространстве. В 40-х годах прошлого века была выдвинута теория о трехмерной структуре молекулы ДНК. У. Астбюри доказал, что дезоксирибонуклеиновая кислота представляет собой стопку из наложенных один на другой плоских нуклеотидов.
Первичная структура молекулы ДНК
Под первичной структурой нуклеиновых кислот подразумевают последовательность расположения нуклеотидов в полинуклеотидной цепи ДНК. Нуклеотиды связываются между собой при помощи фосфодиэфирных связей, которые образуются между ОН-группой в положении 5 дезоксирибозы одного нуклеотида и ОН-группой в положении 3 пентозы другого.
Биологические свойства нуклеиновых кислот определяются качественным соотношением и последовательностью нуклеотидов вдоль полинуклеотидной цепи.
Нуклеотидный состав ДНК у организмов разных таксономических групп специфичен и определяется отношением (Г + Ц)/(А + Т). С помощью коэффициента специфичности была определена степень гетерогенности нуклеотидного состава ДНК у организмов различного происхождения. Так, у высших растений и животных отношение (Г+Ц)/(А+Т) колеблется незначительно и имеет значение больше 1. Для микроорганизмов коэффициент специфичности изменяется в широких пределах — от 0,35 до 2,70. Вместе с тем соматические клетки данного биологического вида содержат ДНК одного и того же нуклеотидного состава, т. е. можно сказать, что по содержанию ГЦ-пар оснований ДНК одного вида идентичны.
Определение гетерогенности нуклеотидного состава ДНК по коэффициенту специфичности еще не дает информации о ее биологических свойствах. Последнее обусловлено различной последовательностью отдельных нуклеотидных участков в полинуклеотидной цепи. Это значит, что генетическая информация в молекулах ДНК закодирована в специфической последовательности ее мономерных единиц.
Молекула ДНК содержит нуклеотидные последовательности, предназначенные для инициации и терминации процессов синтеза ДНК (репликация), синтеза РНК (транскрипция), синтеза белка (трансляция). Имеются нуклеотидные последовательности, которые служат для связывания специфических активирующих и ингибирующих регуляторных молекул, а также нуклеотидные последовательности, не несущие какой-либо генетической информации. Существуют также модифицированные области, которые защищают молекулу от действия нуклеаз.
Проблема нуклеотидной последовательности ДНК до настоящего времени полностью не разрешена. Определение нуклеотидной последовательности нуклеиновых кислот является трудоемкой процедурой, предусматривающей применение метода специфического нуклеазного расщепления молекул на отдельные фрагменты. На сегодняшний день полная нуклеотидная последовательность азотистых оснований установлена для большинства тРНК разного происхождения.
Молекула ДНК: вторичная структура
Уотсон и Крик спроектировали модель двойной спирали дезоксирибонуклеиновой кислоты. Согласно данной модели две полинуклеотидных цепи обвивают друг друга, при этом образуется своеобразная спираль.
Видео: Научная сенсация: в МГУ разгадали механизм упаковки молекулы ДНК
Азотистые основания в них расположены внутри структуры, а фосфодиэфирный остов — снаружи.
Молекула ДНК: третичная структура
Видео: днк
Линейная ДНК в клетке имеет форму вытянутой молекулы, она упакована в компактную структуру и занимает всего 1/5 объема клетки. Например, длина ДНК хромосомы человека достигает 8 см, а упакована так, что умещается в хромосоме с длиной 5 нм. Подобная укладка возможна благодаря наличию спирализованных структур ДНК. Из этого следует, что двухцепочечная спираль ДНК в пространстве может подвергаться дальнейшей укладке в определенную третичную структуру — суперспираль. Суперспиральная конформация ДНК характерна для хромосом высших организмов. Подобная третичная структура стабилизируется за счет ковалентных связей с остатками аминокислот, входящих в состав тех белков, которые образуют нуклеопротеидный комплекс (хроматин). Следовательно, ДНК эукариотических клеток ассоциирована с белками главным образом основного характера — гистонами, а также кислыми белками и фосфопротеидами.