С развитием цифровых технологий в стороне не остались и производители электротехнического оборудования. Несмотря на наличие международной классификации ISO, в России был разработан собственный стандарт МЭК 61850, отвечающий за системы и сети подстанций.
Немного истории
Развитие компьютерных технологий не обошло стороной системы управления электрическими сетями. Общепринятый сегодня стандарт МЭК 61850 изначально был представлен в 2003 году, хотя попытки внедрения систем на этой основе велись еще в 60-х годах прошлого столетия.
Суть его сводится к использованию специальных протоколов управления электрическими сетями. На их основе сейчас и производится отслеживание функционирования всех сетей такого типа.
Если раньше основное внимание уделялось исключительно модернизации компьютерных систем, контролирующих электроэнергетику, то с внедрением правил, стандартов, протоколов в виде МЭК 61850 ситуация изменилась. Главной задачей этого ГОСТа стало обеспечение мониторинга с целью своевременного выявления неполадок в работе соответствующего оборудования.
Протокол МЭК 61850 и его аналоги
Сам же протокол наиболее активно начал применяться в середине 80-х годов. Тогда в качестве первых тестируемых версий использовались модификации МЭК 61850-1, IEC 60870-5 версий 101, 103 и 104, DNP3 и Modbus, которая оказалсь совершенно несостоятельной.
И именно начальная разработка легла в основу современного протокола UCA2, который в середине 90-х годов был успешно применен в Западной Европе.
Как это работает
Останавливаясь на вопросе функционирования, стоит объяснить, что такое протокол МЭК 61850, для «чайников» (людей, которые только постигают основы работы и понимания принципов общения с компьютерной техникой).
Суть состоит в том, что на подстанции или энергостанции устанавливается микропроцессорный чип, позволяющий передавать данные о состоянии всей системы непосредственно на центральный терминал, осуществляющий основное управление.
Передача данных, которую предусматривает ГОСТ Р МЭК 61850, осуществляется через высокоскоростное соединение. Грубо говоря, производится привязка чипа к ближайшей ЛВС.
Система сбора данных DAS (Data Acquisition System) использует как минимум 64-битную передачу совместно с соответствующими алгоритмами шифрования данных.
Но, как показывает практика, и эти системы оказываются достаточно уязвимыми. Смотрели американские фильмы, когда в одном из эпизодов отключается энергоснабжение целого квартала? Вот оно! Управление электрическими сетями на основе протокола МЭК 61850 может быть скоординировано из любого внешнего источника (далее будет понятно, почему). А пока рассмотрим основные системные требования.
Стандарт Р МЭК 61850: требования к системам связи
Если ранее подразумевалось, что сигнал должен предаваться с использованием телефонной линии, сегодня средства связи шагнули далеко вперед. Встроенные чипы способны обеспечивать передачу на уровне 64 Мбит, являясь абсолютно независимыми от провайдеров, предоставляющих стандартные услуги подключения.
Если рассматривать стандарт МЭК 61850 для «чайников», объяснение выглядит достаточно просто: чип энергоблока использует собственный протокол передачи данных, а не общепринятый стандарт TCP/IP. Но и это еще не все.
Сам стандарт и есть протокол МЭК 61850 передачи данных с защищенным соединением. Иными словами, подключение к тому же интернету, беспроводной сети и т. д. осуществляется очень специфичным способом. В настройках, как правило, задействуются параметры прокси-серверов, поскольку именно таковые (пусть даже виртуальные) являются наиболее безопасными.
Общая область применения
Понятно, что согласно тем требованиям, которые выставляет ГОСТ МЭК 61850, установить оборудование такого типа в обычную трансформаторную будку не получится (компьютерному чипу там просто места нет).
Работать такое устройство при всем желании тоже не будет. Ему нужна как минимум начальная система ввода/вывода сродни BIOS, а также соответствующая коммуникативная модель передачи данных (беспроводная сеть, проводное защищенное подключение и т. д.).
Зато в центре управления общей или локальной энергосетью можно получить доступ практически ко всем функциям электростанций. В качестве примера, хоть и не самого лучшего, можно привести фильм «Земное ядро» (The Core), когда хакер предотвращает гибель нашей планеты путем дестабилизации энергического источника, питающего «запасной» вариант раскрутки ядра Земли.
Но это чистая фантастика, скорее даже виртуальное подтверждение требований МЭК 61850 (хотя об этом прямо и не говорится). Тем не менее даже самая примитивная эмуляция МЭК 61850 выглядит именно таким образом. А ведь скольких катастроф можно было избежать?
Тот же 4-ый энергоблок Чернобыльской АЭС, если бы на нем были установлены средства диагностики, соответствующие стандарту хотя бы МЭК 61850-1, может быть, и не взорвался бы. А с 1986 года остается только пожинать плоды произошедшего.
Радиация - она такая, что действует скрытно. В первые дни, месяцы или годы признаки лучевой болезни могут и не проявляться, не говоря уже о периодах полураспада урана и плутония, на что сегодня мало кто обращает внимание. А вот интегрирование тех же счетчиков Гейгера в энергостанцию могло бы существенно снизить риск пребывания в этой зоне. Кстати, и сам протокол позволяет передавать такие данные на программно-аппаратном уровне задействованного комплекса.
Методика моделирования и преобразование в реальные протоколы
Для самого простого понимания того, как работает, например, стандарт МЭК 61850-9-2, стоит сказать, что ни один железный провод не может определить направление передаваемых данных. То есть нужен соответствующий ретранслятор, способный передавать данные о состоянии системы, причем в зашифрованном виде.
Принять сигнал, как оказывается, достаточно просто. Но вот чтобы он был прочитан и расшифрован принимающим устройством, придется попотеть. На самом-то деле, чтобы расшифровать поступающий сигнал, например, на основе МЭК 61850-2 на начальном уровне нужно использовать системы визуализации вроде SCADA и P3A.
Но исходя из того что эта система использует проводные средства связи, основными протоколами считаются GOOSE и MMS (не путать с мобильными сообщениями). Такое преобразование стандарт МЭК 61850-8 производит последовательным использованием сначала MMS, а затем GOOSE, что в конечном итоге позволяет добиться отображения информации по технологиям P3A.
Основные типы конфигурирования подстанций
Любая подстанция, использующая данный протокол, должна обладать хотя бы минимальным набором средств для передачи данных. Во-первых, это касается самого физического устройства, подключенного к сети. Во-вторых, в каждом таком агрегате должен иметься один или несколько логических модулей.
В этом случае сам девайс способен выполнять функцию концентратора, шлюза или даже своеобразного посредника для передачи информации. Сами же логические узлы имеют узкую направленность и разделяются на следующие классы:
- «А» - автоматизированные системы управления;
- «М» - системы измерений;
- «С» - телеметрическое управление;
- «G» - модули общих функций и параметров настройки;
- «I» - средства установки связи и применяемые методы архивации данных;
- «L» - логические модули и системные узлы;
- «P» - защита;
- «R» - связанные защитные компоненты;
- «S» - датчики;
- «T» - трансформаторы-измерители;
- «X» - блок-контактная коммутационная аппаратура;
- «Y» - трансформаторы силового типа;
- «Z» - все остальное, что не входит в вышеперечисленные категории.
Считается, что протокол МЭК 61850-8-1, например, способен обеспечить меньшее использование проводов или кабелей, что, конечно же, только положительным образом влияет на простоту конфигурации оборудования. Но основная проблема, как оказывается, состоит в том, что не все администраторы способны обрабатывать принимаемые данные даже при наличии соответствующих программных пакетов. Хочется надеяться, что это временная проблема.
Прикладное ПО
Тем не менее даже в ситуации непонимания физических принципов действия программ такого типа эмуляция МЭК 61850 может производиться в любой операционной системе (даже в мобильной).
Считается, что управляющий персонал или интеграторы тратят намного меньше времени на обработку данных, поступающих с подстанций. Архитектура таких приложений интуитивно понятна, интерфейс прост, а вся обработка заключается только в введении локализованных данных с последующей автоматической выдачей результата.
К недостаткам таких систем можно отнести разве что завышенную стоимость оборудования P3A (микропроцессорные системы). Отсюда и невозможность его массового применения.
Практическое применение
До этого все изложенное в отношении протокола МЭК 61850 касалось только теоретических сведений. Как это работает на практике?
Допустим, у нас имеется силовая установка (подстанция) с трехфазным питанием и двумя измерительными входами. При определении стандартного логического узла используется имя MMXU. Для стандарта МЭК 61850 их может быть два: MMXU1 и MMXU2. Каждый такой узел для упрощения идентификации может содержать еще и дополнительный префикс.
В качестве примера можно привести смоделированный узел на основе XCBR. Он отождествляется с применением некоторых основных операторов:
- Loc – определение локального или удаленного местоположения;
- OpCnt – методика подсчета выполненных (выполняемых) операций;
- Pos – оператор, отвечающий за локацию и схожий с параметрами Loc;
- BlkOpn – команда отключения блокировки включателя;
- BlkCls - включение блокировки;
- CBOpCap – выбор режима срабатывания переключателя.
Такая классификация для описания классов данных CDC в основном применяется в системах модификации 7-3. Однако даже в этом случае конфигурирование построено на использовании нескольких признаков (FC – функциональные ограничения, SPS – состояние единичной контрольной точки, SV и ST – свойства подстановочных систем, DC и EX – описание и расширенное определение параметров).
Что касается определения и описания класса SPS, логическая цепочка включает в себя свойства stVal, качество - q, и параметры текущего времени - t.
Таким образом производится трансформирование данных по технологиям подключения Ethernet и протоколам TCP/IP непосредственно в объектную переменную MMS, которая уже потом идентифицируется с присвоенным именем, что и приводит к получению истинного значения любого задействованного на данный момент показателя.
Кроме того, сам протокол МЭК 61850 является всего лишь обобщенной и даже абстрактной моделью. Но на его основе производится описание структуры любого элемента энергосистемы, что позволяет микропроцессорным чипам совершенно точно идентифицировать каждое устройство, задействованное в этой области, включая те, которые используют технологии энергосбережения.
Теоретически формат протокола можно преобразовать в любой тип данных, основываясь на стандартах MMS и ISO 9506. Но почему же тогда был выбран именно управляющий стандарт МЭК 61850?
Его связывают исключительно с достоверностью получаемых параметров и легким процессом работы с присваиванием сложных имен или моделей самого сервиса.
Такой процесс без задействования протокола MMS оказывается очень трудоемким даже при формировании запросов вроде «чтение-запись-отчет». Нет, конечно, можно произвести преобразование такого типа даже для архитектуры UCA. Но, как показывает практика, именно применение стандарта МЭК 61850 позволяет сделать это без особых усилий и затрат по времени.
Вопросы верификации данных
Однако же данная система не ограничивается только приемом-передачей. На самом деле встраиваемые микропроцессорные системы позволяют производить обмен данными не только на уровне подстанций и центральных управляющих систем. Они могут при наличии соответствующего оборудования обрабатывать данные между собой.
Пример прост: электронный чип передает данные о силе тока или напряжении в ответственном участке. Соответственно, любая другая подсистема на основе падения напряжения может задействовать или отключить дополнительную систему питания. Все это основано на стандартных законах физики и электротехники, правда, зависит от тока. Например, у нас стандартом является напряжение 220 В. В Европе – 230 В.
Если взглянуть на критерии отклонений, в бывшем СССР это +/- 15%, в то время как в развитых европейских странах он составляет не более 5%. Неудивительно, что фирменная западная техника просто выходит из строя только по причине перепадов напряжения в электросети.
И наверное, не нужно говорить, что многие из нас наблюдают во дворе строение в виде трансформаторной будки, построенной еще во времена Советского Союза. Как вы думаете, можно туда установить компьютерный чип или подключить специальные кабели для получения информации о состоянии трансформатора? Вот то-то и оно, что нет!
Новые системы на основе стандарта МЭК 61850 позволяют произвести полный контроль всех параметров, однако очевидная невозможность его повсеместного внедрения отталкивает соответствующие службы вроде «Энергосбытов» в плане задействования протоколов этого уровня.
Ничего удивительного в этом нет. Компании, распределяющие электроэнергию между потребителями, могут просто лишиться прибыли или даже привилегий на рынке.
Вместо итога
В целом же протокол, с одной стороны, является простым, а с другой – очень сложным. Проблема состоит даже не в том, что на сегодняшний день нет соответствующего ПО, а в том, что вся система контроля за электроэнергетикой, доставшаяся нам от СССР, для этого просто не подготовлена. А если взять в расчет низкую квалификацию обслуживающего персонала, тут и речи не может быть о том, что кто-то способен контролировать или устранять проблемы своевременно. У нас ведь как принято? Проблема? Обесточиваем микрорайон. Только и всего.
Зато применение этого стандарта позволяет избежать подобного рода ситуаций, не говоря уже о всяких веерных отключениях.
Таким образом, остается только подвести некий итог. Что конечному пользователю несет использование протокола МЭК 61850? В самом простом понимании – это бесперебойное электроснабжение с отсутствием перепадов напряжения в сети. Заметьте, если для компьютерного терминала или ноутбука не предусмотрено использование блока бесперебойного питания или стабилизатора напряжения, перепад или скачок могут спровоцировать моментальное отключение системы. Ладно, если потребуется восстановление на программном уровне. А если сгорят планки оперативной памяти или выйдет из строя винчестер, что тогда делать?
Это, конечно, является отдельным предметом для исследования, однако сами стандарты, ныне применяемые в энергостанциях с соответствующими «железными» и программными средствами диагностики способны контролировать абсолютно все параметры сетей, предотвращая ситуации с появлением критических сбоев, которые могут привести не только к поломке бытовой техники, но и к выходу из строя всей домашней проводки (она, как известно, рассчитана не более чем на 2 кВт при стандартном напряжении в сети 220 В). Поэтому, включая одновременно холодильник, стиральную машину или бойлер для подогрева воды, сто раз подумайте, насколько это оправдано.
Если же данные версии протоколов задействованы, настройки подсистемы будут применены автоматически. И в самой большей степени это касается срабатывания тех же 16-амперных предохранителей, которые жители 9-этажек иногда устанавливают самостоятельно, минуя службы, за это отвечающие. Но цена вопроса, как оказывается, намного выше, ибо позволяет обойти некоторые ограничения, связанные с выше указанным стандартом и его сопутствующими правилами.