Многих людей всегда интересовало, почему некоторые признаки, имеющиеся у родителей, передаются ребенку (например, цвет глаз, волос, форма лица и другие). Наукой было доказано, что данная передача признака зависит от генетического материала, или ДНК.
Видео: Строение и свойство живых организмов. Чем живое отличается от не жывого
Что такое ДНК?
В настоящее время под дезоксирибонуклеиновой кислотой понимают сложное соединение, отвечающее за передачу наследственных признаков. Данная молекула содержится в любой клетке нашего тела. В ней запрограммированы основные признаки нашего организма (за развитие того или иного признака отвечает определенный белок).
Видео: 2. Химия клетки - Нуклеиновые кислоты, ДНК (9 класс) - биология, подготовка к ЕГЭ и ОГЭ
Из чего же она состоит? В состав ДНК входят сложные соединения – нуклеотиды. Под нуклеотидом понимается блок или мини-соединение, имеющее в своем составе азотистое основание, остаток фосфорной кислоты и сахар (в данном случае – дезоксирибоза).
ДНК представляет собой двуцепочечную молекулу, в которой каждая из цепей соединяется с другой через азотистые основания по принципу комплементарности.
Кроме того, можно считать, что в состав ДНК входят гены – определенные нуклеотидные последовательности, отвечающие за синтез белка. Какие же химические особенности строения имеет дезоксирибонуклеиновая кислота?
Нуклеотид
Как было сказано, основной структурной единицей дезоксирибонуклеиновой кислоты является нуклеотид. Это сложное образование. Состав нуклеотида ДНК следующий.
По центру нуклеотида находится пятикомпонентный сахар (в ДНК это дезоксирибоза, в отличие от РНК, в которой содержится рибоза). К нему присоединяется азотистое основание, которых выделяют 5 типов: аденин, гуанин, тимин, урацил и цитозин. Кроме того, каждый нуклеотид имеет в своем составе и остаток фосфорной кислоты.
В состав ДНК входят только те нуклеотиды, которые имеют указанные структурные единицы.
Все нуклеотиды расположены в виде цепи и следуют друг за другом. Группируясь по триплетам (по три нуклеотида), они образуют последовательность, в которой каждый триплет соответствует определенной аминокислоте. В результате образуется цепь.
Они объединяются между собой за счет связей азотистых оснований. Основная связь между нуклеотидами параллельных цепей – водородная.
Нуклеотидные последовательности являются основой генов. Нарушение в их структуре ведет к сбою в синтезе белков и проявлению мутаций. В состав ДНК входят одинаковые гены, определяющиеся практически у всех людей и отличающие их от других организмов.
Модификация нуклеотида
В некоторых случаях для более стабильной передачи того или иного признака используется модифицирование азотистого основания. Химический состав ДНК изменяется за счет присоединения метильной группы (СН3). Подобная модификация (на одном нуклеотиде) позволяет стабилизировать генную экспрессию и передачу признаков дочерним клеткам.
Подобное &ldquo-улучшение&rdquo- структуры молекулы никоим образом не сказывается на объединении азотистых оснований.
Данная модификация используется и при инактивации Х-хромосомы. В результате этого образуются тельца Барра.
При усиленном канцерогенезе анализ ДНК показывает, что цепочка нуклеотидов была подвержена метилированию на многих основаниях. В проведенных наблюдениях было замечено, что источником мутации обычно служит метилированный цитозин. Обычно при опухолевом процессе деметилирование может способствовать остановке процесса, но за счет своей сложности данная реакция не проводится.
Структура ДНК
В строении молекулы выделяют два типа структуры. Первый тип – линейная последовательность, образованная нуклеотидами. Их построение подчиняется некоторым законам. Запись нуклеотидов на молекуле ДНК начинается с 5&rsquo--конца и заканчивается 3&rsquo--концом. Вторая цепь, расположенная напротив, строится таким же образом, только в пространственном отношении молекулы находятся одна напротив другой, причем 5&rsquo--конец одной цепи расположен напротив 3&rsquo--конца второй.
Вторичная структура ДНК – спираль. Обуславливается наличием водородных связей между располагающимися друг напротив друга нуклеотидами. Водородная связь образуется между комплементарными азотистыми основаниями (например, напротив аденина первой цепи может находиться только тимин, а напротив гуанина – цитозин либо урацил). Подобная точность обусловлена тем, что построение второй цепи происходит на основе первой, поэтому между азотистыми основаниями наблюдается точное соответствие.
Синтез молекулы
Каким же образом образуется молекула ДНК?
В цикле ее образования выделяют три стадии:
- Рассоединение цепей.
- Присоединение синтезирующих единиц к одной из цепей.
- Достраивание второй цепи по принципу комплементарности.
На стадии разъединения молекулы основную роль играют ферменты – ДНК-гиразы. Данные ферменты ориентированы на разрушение водородных связей между цепями.
После расхождения цепей в дело вступает основной синтезирующий фермент – ДНК-полимераза. Ее присоединение наблюдается на участке 5&rsquo-. Далее данный фермент движется в сторону 3&rsquo--конца, попутно присоединяя необходимые нуклеотиды с соответствующими азотистыми основаниями. Дойдя до определенного участка (терминатора) на 3&rsquo--конце, полимераза отсоединяется от исходной цепи.
После того как образовалась дочерняя цепь, между основаниями образуется водородная связь, которая и скрепляет вновь образованную молекулу ДНК.
Где можно найти данную молекулу?
Если углубиться в строение клеток и тканей, то можно увидеть, что ДНК в основном содержится в ядре клетки. Ядро отвечает за образование новых, дочерних, клеток или их клонов. При этом наследственная информация, находящаяся в нем, разделяется между новообразованными клетками равномерно (образуются клоны) или по частям (часто можно наблюдать такое явление при мейозе). Поражение ядра влечет за собой нарушение образования новых тканей, что приводит к мутации.
Кроме того, особый тип наследственного материала содержится в митохондриях. В них ДНК несколько отличается от таковой в ядре (митохондриальная дезоксирибонуклеиновая кислота имеет кольцевидную форму и выполняет несколько другие функции).
Сама молекула может выделяться из любых клеток организма (для исследования чаще всего используют мазок с внутренней стороны щеки либо кровь). Отсутствует генетический материал только в отшелушивающемся эпителии и некоторых клетках крови (эритроцитах).
Функции
Состав молекулы ДНК обуславливает выполнение ею функции передачи информации из поколения в поколение. Это происходит за счет синтеза определенных белков, обуславливающих проявление того или иного генотипического (внутреннего) или фенотипического (внешнего – например, цвет глаз или волос) признака.
Передача информации осуществляется за счет реализации ее из генетического кода. На основании сведений, зашифрованных в генетическом коде, происходит выработка специфических информационных, рибосомальных и транспортных РНК. Каждая из них отвечает за определенное действие – информационная РНК используется для синтеза белков, рибосомальная участвует в сборке белковых молекул, а транспортная образует соответствующие белки.
Любой сбой в их работе или изменение структуры приводят к нарушению выполняемой функции и появлению нетипичных признаков (мутаций).
Видео: Химия 18. Химические свойства кислот — Академия занимательных наук
ДНК-тест на отцовство позволяет определить наличие родственных признаков между людьми.
Генетические тесты
Для чего в настоящее время может использоваться исследование генетического материала?
Анализ ДНК используется для определения многих факторов или изменений в организме.
В первую очередь исследование позволяет определить наличие врожденных, передающихся по наследству заболеваний. К таким болезням можно отнести синдром Дауна, аутизм, синдром Марфана.
Для определения родственных связей также можно исследовать ДНК. Тест на отцовство уже давно получил широкое распространение во многих, в первую очередь юридических, процессах. Данное исследование назначают при определении генетического родства между внебрачными детьми. Часто этот тест сдают претенденты на наследство при возникновении вопросов со стороны органов власти.