Зачастую гениальные открытия, совершенные в науке, способны кардинально изменять нашу жизнь. Так, например, изобретение вакцины может спасти множество людей, а создание нового вооружения приводит к убийству. Буквально вчера (в масштабе истории) человек «укротил» электричество, а сегодня уже не может представить свою жизнь без него. Однако существуют и такие открытия, которые, что называется, остаются в тени, причем несмотря на то, что они также оказывают то или иное влияние на нашу жизнь. Одним из таких открытий стал фрактал. Большинство людей даже не слышали о таком понятии и не смогут объяснить его значение. В этой статье мы попробуем разобраться с вопросом о том, что такое фрактал, рассмотрим значение этого термина с позиции науки и природы.
Порядок в хаосе
Для того чтобы понять, что такое фрактал, следовало бы начать разбор полетов с позиции математики, однако прежде чем углубляться в точные науки, мы немного пофилософствуем. Каждому человеку присуща природная любознательность, благодаря которой он и познает окружающий мир. Зачастую в своем стремлении познания он старается оперировать логикой в суждениях. Так, анализируя процессы, которые происходят вокруг, он пытается вычислить взаимосвязи и вывести определенные закономерности. Самые большие умы планеты заняты решением этих задач. Грубо говоря, наши ученые ищут закономерности там, где их нет, да и быть не должно. И тем не менее даже в хаосе есть связь между теми или иными событиями. Вот этой связью и выступает фрактал. В качестве примера рассмотрим сломанную ветку, валяющуюся на дороге. Если внимательно к ней присмотреться, то мы увидим, что она со всеми своими ответвлениями и сучками сама похожа на дерево. Вот эта схожесть отдельной части с единым целым свидетельствует о так называемом принципе рекурсивного самоподобия. Фракталы в природе можно найти сплошь и рядом, ведь многие неорганические и органические формы формируются аналогично. Это и облака, и морские раковины, и раковины улиток, и кроны деревьев, и даже кровеносная система. Данный список можно продолжать до бесконечности. Все эти случайные формы с легкостью описывает фрактальный алгоритм. Вот мы подошли к тому, чтобы рассмотреть, что такое фрактал с позиции точных наук.
Немного сухих фактов
Само слово «фрактал» с латыни переводится как "частичный", "разделенный", "раздробленный", а что касается содержания этого термина, то формулировки как таковой не существует. Обычно его трактуют как самоподобное множество, часть целого, которая повторяется своей структурой на микроуровне. Этот термин придумал в семидесятых годах ХХ века Бенуа Мандельброт, который признан отцом фрактальной геометрии. Сегодня под понятием фрактала подразумевают графическое изображение некой структуры, которая при увеличенном масштабе будет подобна сама себе. Однако математическая база для создания этой теории была заложена еще до рождения самого Мандельброта, а вот развиваться она не могла, пока не появились электронные вычислительные машины.
Видео: Фракталы в природе
Историческая справка, или Как все начиналось
На рубеже 19-20 веков изучение природы фракталов носило эпизодический характер. Это объясняется тем, что математики предпочитали изучать объекты, поддающиеся исследованию, на основе общих теорий и методов. В 1872 году немецким математиком К. Вейерштрассом был построен пример непрерывной функции, нигде не дифференцируемой. Однако это построение оказалась целиком абстрактным и трудным для восприятия. Дальше пошел швед Хельге фон Кох, который в 1904 году построил непрерывную кривую, не имеющую нигде касательной. Ее довольно легко нарисовать, и, как оказалось, она характеризуется фрактальными свойствами. Один из вариантов данной кривой назвали в честь ее автора – «снежинка Коха». Далее идею самоподобия фигур развивал будущий наставник Б. Мандельброта француз Поль Леви. В 1938 году он опубликовал статью «Плоские и пространственные кривые и поверхности, состоящие из частей, подобных целому». В ней он описал новый вид – С-кривую Леви. Все вышеперечисленные фигуры условно относятся к такому виду, как геометрические фракталы.
Динамические, или алгебраические фракталы
К данному классу относится множество Мандельброта. Первыми исследователями этого направления стали французские математики Пьер Фату и Гастон Жюлиа. В 1918 году Жюлиа опубликовал работу, в основе которой лежало изучение итераций рациональных комплексных функций. Здесь он описал семейство фракталов, которые близко связаны с множеством Мандельброта. Невзирая на то что данная работа прославила автора среди математиков, о ней быстро забыли. И только спустя полвека благодаря компьютерам труд Жюлиа получил вторую жизнь. ЭВМ позволили сделать видимым для каждого человека ту красоту и богатство мира фракталов, которые могли «видеть» математики, отображая их через функции. Мандельброт стал первым, кто использовал компьютер для проведения вычислений (вручную такой объем невозможно провести), позволивших построить изображение этих фигур.
Человек с пространственным воображением
Мандельброт начинал свою научную карьеру в исследовательском центре IBM. Изучая возможности передачи данных на большие расстояния, ученые столкнулись с фактом больших потерь, которые возникали из-за шумовых помех. Бенуа искал пути решения этой проблемы. Просматривая результаты измерений, он обратил внимание на странную закономерность, а именно: графики шумов выглядели одинаково в разном масштабе времени. Аналогичная картина наблюдалась как для периода в один день, так и для семи дней или для часа. Сам Бенуа Мандельброт часто повторял, что он работает не с формулами, а играет с картинками. Этот ученый отличался образным мышлением, любую алгебраическую задачу он переводил в геометрическую область, где правильный ответ очевиден. Так что неудивительно, что такой человек, отличающийся богатым пространственным мышлением, и стал отцом фрактальной геометрии. Ведь осознание данной фигуры может прийти только тогда, когда изучаешь рисунки и вдумываешься в смысл этих странных завихрений, образующих узор. Фрактальные рисунки не имеют идентичных элементов, однако обладают подобностью при любом масштабе.
Жюлиа – Мандельброт
Одним из первых рисунков этой фигуры была графическая интерпретация множества, которая родилась благодаря работам Гастона Жюлиа и была доработана Мандельбротом. Гастон пытался представить, как выглядит множество, построенное на базе простой формулы, которая проитерирована циклом обратной связи. Попробуем сказанное объяснить человеческим языком, так сказать, на пальцах. Для конкретного числового значения с помощью формулы находим новое значение. Подставляем его в формулу и находим следующее. В результате получается большая числовая последовательность. Для представления такого множества требуется проделать эту операцию огромное количество раз: сотни, тысячи, миллионы. Это и проделал Бенуа. Он обработал последовательность и перенес результаты в графическую форму. Впоследствии он раскрасил полученную фигуру (каждый цвет соответствует определенному числу итераций). Данное графическое изображение получило имя «фрактал Мандельброта».
Л. Карпентер: искусство, созданное природой
Теория фракталов довольно быстро нашла практическое применение. Так как она весьма тесно связана с визуализацией самоподобных образов, то первыми, кто взял на вооружение принципы и алгоритмы построения этих необычных форм, стали художники. Первым из них стал будущий основатель студии Pixar Лорен Карпентер. Работая над презентацией прототипов самолетов, ему в голову пришла идея в качестве фона использовать изображение гор. Сегодня с такой задачей сможет справиться практически каждый пользователь компьютера, а в семидесятых годах прошлого века ЭВМ были не в состоянии выполнять такие процессы, ведь графических редакторов и приложений для трехмерной графики на тот момент еще не было. И вот Лорену попалась книга Мандельброта «Фракталы: форма, случайность и размерность». В ней Бенуа приводил множество примеров, показывая, что существуют фракталы в природе (фыва), он описывал их разнообразную форму и доказывал, что они легко описываются математическими выражениями. Данную аналогию математик приводил в качестве аргумента полезности разрабатываемой им теории в ответ на шквал критики от своих коллег. Они утверждали, что фрактал - это всего лишь красивая картинка, не имеющая никакой ценности, являющаяся побочным результатом работы электронных машин. Карпентер решил опробовать этот метод на практике. Внимательно изучив книгу, будущий аниматор стал искать способ реализации фрактальной геометрии в компьютерной графике. Ему понадобилось всего три дня, чтобы визуализировать вполне реалистичное изображение горного ландшафта на своем компьютере. И сегодня этот принцип широко используется. Как оказалось, создание фракталов не занимает много времени и сил.
Решение Карпентера
Принцип, использованный Лореном, оказался прост. Он состоит в том, чтобы разделить более крупные геометрические фигуры на мелкие элементы, а те - на аналогичные меньшего размера, и так далее. Карпентер, используя крупные треугольники, дробил их на 4 мелких, и так далее, до тех пор, пока у него не получился реалистичный горный пейзаж. Таким образом, он стал первым художником, который применил фрактальный алгоритм в компьютерной графике для построения требуемого изображения. Сегодня этот принцип используется для имитации различных реалистичных природных форм.
Видео: Фракталы: скрытый порядок в хаосе
Первая 3D-визуализация на фрактальном алгоритме
Уже через несколько лет Лорен применил свои наработки в масштабном проекте – анимационном ролике Vol Libre, показанном на Siggraph в 1980 году. Это видео потрясло многих, и его создатель был приглашен работать в Lucasfilm. Здесь аниматор смог реализоваться в полной мере, он создал трехмерные ландшафты (целую планету) для полнометражного фильма "Star Trek". Любая современная программа («Фракталы») или приложение для создания трехмерной графики (Terragen, Vue, Bryce) использует все тот же алгоритм для моделирования текстур и поверхностей.
Видео: Фракталы в природе очень красивое видео смотреть
Том Беддард
В прошлом лазерный физик, а ныне цифровых дел мастер и художник , Беддард создал ряд весьма интригующих геометрических фигур, которые назвал фракталы Фаберже. Внешне они напоминают декоративные яйца русского ювелира, на них такой же блестящий замысловатый узор. Беддард использовал шаблонный метод для создания своих цифровых визуализаций моделей. Полученные изделия поражают своей красотой. Хоть многие отказываются сравнивать продукт ручной работы с компьютерной программой, однако следует признать, что полученные формы необычайно красивы. Изюминка заключается в том, что построить такой фрактал сможет любой желающий, воспользовавшись программной библиотекой WebGL. Она позволяет исследовать в реальном времени различные фрактальные структуры.
Фракталы в природе
Мало кто обращает внимание, но эти удивительные фигуры присутствуют повсюду. Природа создана из самоподобных фигур, просто мы этого не замечаем. Достаточно посмотреть через увеличительное стекло на нашу кожу или листок дерева, и мы увидим фракталы. Или взять, к примеру, ананас или даже хвост павлина – они состоят из подобных фигур. А сорт капусты брокколи Романеску вообще поражает своим видом, ведь это поистине можно назвать чудом природы.
Видео: Фракталы в природе
Музыкальная пауза
Оказывается, фракталы - это не только геометрические фигуры, они могут быть и звуками. Так, музыкант Джонатан Колтон пишет музыку с помощью фрактальных алгоритмов. Он утверждает, что такая мелодия соответствует природной гармонии. Композитор все свои произведения публикует под лицензией CreativeCommons Attribution-Noncommercial, которая предусматривает свободное распространение, копирование, передачу произведений другими лицами.
Видео: Фракталы. Поиски новых размерностей 3/4
Индикатор-фрактал
Данная методика нашла весьма неожиданное применение. На ее основе создан инструмент для анализа рынка фондовой биржи, и, как следствие, его начали применять на рынке «Форекс». Сейчас индикатор-фрактал находится на всех торговых платформах и применяется в торговой технике, которую называют ценовым прорывом. Разработал эту методику Билл Вильямс. Как комментирует свое изобретение автор, данный алгоритм является сочетанием нескольких «свечей», в котором центральная отражает максимальную либо, наоборот, минимальную экстремальную точку.
В заключение
Вот мы и рассмотрели, что такое фрактал. Оказывается, в хаосе, который окружает нас, на самом деле существуют идеальные формы. Природа является лучшим архитектором, идеальным строителем и инженером. Она устроена весьма логично, и если мы не можем найти закономерность, это не значит, что ее нет. Может быть, нужно искать в ином масштабе. С уверенностью можно сказать, что фракталы хранят еще немало секретов, которые нам только предстоит открыть.