Фотосинтез - что такое? Стадии фотосинтеза. Условия фотосинтеза

Вы когда-нибудь задумывались, сколько на планете живых организмов?! И ведь всем им нужно вдыхать кислород, чтобы выработать энергию и выдохнуть углекислый газ. Именно углекислый газ - основная причина такого явления, как духота в помещении. Она имеет место тогда, когда в нем находится много людей, а комната продолжительное время не проветривается. Кроме этого, ядовитыми веществами наполняют воздух производственные объекты, частный автомобильный и общественный транспорт.

С учетом вышесказанного возникает вполне логичный вопрос: как же мы тогда еще не задохнулись, если все живое является источником ядовитого углекислого газа? Спасителем всех живых существ в данной ситуации выступает фотосинтез. Что такое представляет собой этот процесс и в чем его необходимость?

фотосинтез что такое

Его результат – регулировка баланса углекислого газа и насыщение воздуха кислородом. Известен такой процесс только представителям мира флоры, то есть растениям, поскольку происходит только в их клетках.

Сам по себе фотосинтез — это чрезвычайно сложная процедура, зависящая от определенных условий и происходящий в несколько этапов.

Определение понятия

Согласно научному определению, органические вещества в процессе фотосинтеза преобразуются в органические на клеточном уровне у автотрофных организмов за счет воздействия света солнца.

условия фотосинтеза

Если сказать более понятным языком, фотосинтез представляет собой процесс, при котором происходит следующее:

Видео: Фотосинтез

  1. Растение насыщается влагой. Источником влаги может быть вода из грунта либо влажный тропический воздух.
  2. Происходит реакция хлорофилла (специального вещества, которое содержится в растении) на воздействие солнечной энергии.
  3. Образование необходимой представителям флоры пищи, которую самостоятельно добыть они не в состоянии гетеротрофным способом, а сами являются ее производителем. Иначе говоря, растения питаются тем, что сами производят. Это и есть результат фотосинтеза.

Этап первый

Практически каждое растение содержит зеленое вещество, благодаря которому оно может поглощать свет. Это вещество является не чем иным, как хлорофиллом. Его местонахождение – хлоропласты. А вот хлоропласты располагаются в стеблевой части растения и его плодах. Но особенно распространен в природе фотосинтез листа. Поскольку последний довольно прост по своей структуре и имеет относительно большую поверхность, а значит, объемы энергии, необходимой для протекания процесса-спасителя будут гораздо больше.

стадии фотосинтеза

Когда свет поглощен хлорофиллом, последний пребывает в состоянии возбуждения и свои энергетические посылы передает другим органическим молекулам растения. Наибольшее количество такой энергии достается участникам процесса фотосинтеза.

Этап второй

Образование фотосинтеза на втором этапе не требует обязательного участия света. Он состоит в формировании химических связей с использованием ядовитого углекислого газа, образующегося из воздушных масс и воды. Также происходит синтез множества веществ, которые обеспечивают жизнедеятельность представителей флоры. Таковыми являются крахмал, глюкоза.

У растений такие органические элементы выступают источником питания для отдельных частей растения, одновременно обеспечивая нормальное протекание процессов жизнедеятельности. Такие вещества получают и представители фауны, которые употребляют растения в пищу. Человеческий же организм насыщается этими веществами через пищу, которая входит в ежедневный рацион.

Что? Где? Когда?

Чтобы органические вещества превратились в органические, нужно обеспечить соответствующие условия фотосинтеза. Для рассматриваемого процесса необходим в первую очередь свет. Речь идет и об искусственном, и о солнечном свете. На природе обычно деятельность растений характеризуется интенсивностью весной и летом, то есть тогда, когда существует необходимость в поступлении большого количества солнечной энергии. Чего не скажешь об осенней поре, когда света все меньше, день все короче. В результате листва желтеет, а потом и вовсе опадает. Но как только заблестят первые весенние лучики солнца, взойдет зеленая травка, тут же возобновят свою деятельность хлорофиллы, и начнется активная выработка кислорода и других питательных веществ, которые носят жизненно важный характер.

Условия фотосинтеза включают не только наличие освещенности. Влаги тоже должно быть достаточно. Ведь растение сперва поглощает влагу, а потом начинается реакция с участием солнечной энергии. Результатом такого процесса и являются продукты питания растений.

Только при наличии зеленого вещества происходит фотосинтез. Что такое хлорофиллы, мы уже рассказывали выше. Они выступают неким проводником между светом или солнечной энергией и самим растением, обеспечивая надлежащее протекание их жизни и деятельности. Зеленые вещества обладают способностью поглощения множества солнечных лучей.

Немалую роль играет и кислород. Чтобы процесс фотосинтеза прошел успешно, растениям нужно его много, поскольку в его составе содержится всего 0,03% углекислой кислоты. Значит, из 20 000 м3 воздуха можно получить 6 м3 кислоты. Именно последнее вещество - основной исходный материал для глюкозы, которая, в свою очередь, является веществом, необходимым для жизнедеятельности.

в темновой фазе фотосинтеза




Существует две стадии фотосинтеза. Первая называется световая, вторая – темновая.

В чем механизм протекания световой стадии

Световая стадия фотосинтеза имеет еще одно название – фотохимическая. Основными участниками на этом этапе являются:

  • энергия солнца;
  • разнообразные пигменты.

С первой составляющей все понятно, это солнечный свет. А вот что представляют собой пигменты, знает не каждый. Они бывают зелеными, желтыми, красными или синими. К зеленым относятся хлорофиллы групп «А» и «Б», к желтым и красным/синим – фикобилины соответственно. Фотохимическую активность среди участников этой стадии процесса проявляют только хлорофиллы «А». Остальным принадлежит дополняющая роль, суть которой – сбор квантов света и их транспортировка к фотохимическому центру.

Поскольку хлорофилл наделен способностью эффективного поглощения солнечной энергии с определенной длиной волны, были идентифицированы следующие фотохимические системы:

- Фотохимический центр 1 (зеленые вещества группы «А») – в состав включен пигмент 700, поглощающий световые лучи, длина которых приблизительно 700 нм. Этому пигменту принадлежит основополагающая роль в создании продуктов световой стадии фотосинтеза.

- Фотохимический центр 2 (зеленые вещества группы «Б») – в состав включен пигмент 680, поглощающий световые лучи, длина которых 680 нм. Ему принадлежит роль второго плана, заключающаяся в функции восполнении электронов, утраченных фотохимическим центром 1. Достигается благодаря гидролизу жидкости.

На 350– 400 молекул пигментов, которые концентрируют в себе потоки света в фотосистеме 1 и 2 приходится только одна молекула пигмента, являющегося активным фотохимически — хлорофилла группы «А».

Что происходит?

1. Световая энергия, поглощаемая растением, оказывает воздействие на содержащийся в нем пигмент 700, который переходит из обычного состояния в состояние возбуждения. Пигмент теряет электрон, в результате чего образуется так называемая электронная дыра. Далее молекула пигмента, которая утратила электрон, может выступать в качестве его акцептора, то есть стороной, принимающей электрон, и возвращать свою форму.

2. Процесс разложения жидкости в фотохимическом центре светопоглощающего пигмента 680 фотосистемы 2. При разложении воды образуются электроны, которые изначально акцептируются таким веществом, как цитохром С550, и обозначаются буквой Q. Затем от цитохрома электроны попадают в цепь переносчиков и транспортируются в фотохимический центр 1 для восполнения электронной дыры, которая стала результатом проникновения квантов света и восстановительного процесса пигмента 700.

Бывают случаи, когда такая молекула получает обратно электрон, идентичный прежнему. Это приведет к выделению энергии света в виде тепла. Но практически всегда электрон, имеющий отрицательный заряд, соединяется со специальными железосерными белками и переносится по одной из цепей к пигменту 700 либо попадает в другую цепь переносчиков и воссоединяется с постоянным акцептором.

При первом варианте имеет место циклическая транспортировка электрона замкнутого типа, при втором – нециклическая.

Оба процесса попадают на первой стадии фотосинтеза под катализацию одной и той же цепью переносчиков электронов. Но стоит отметить, что при фотофосфорилировании циклического типа начальной и одновременно конечной точкой транспортировки является хролофилла, в то время когда нециклическая транспортировка подразумевает переход зеленого вещества группы «Б» к хлорофиллу «А».

Особенности циклической транспортировки

Фосфорилирование циклическое называется еще фотосинтетическим. В результате такого процесса образуются молекулы АТФ. В основе такой транспортировки лежит возвращение через несколько последовательных этапов электронов в возбужденном состоянии на пигмент 700, в результате чего высвобождается энергия, принимающая участие в работе фосфорилирующей ферментной системы с целью дальнейшей аккумуляции в фосфатных связях АТФ. То есть энергия не рассеивается.

Видео: 71 - Световая фаза фотосинтеза

Фосфорилирование циклическое представляет собой первичную реакцию фотосинтеза, в основе которой технология образования химической энергии на мембранных поверхностях тилактоидов хлоропластов благодаря использованию энергии солнечных лучей.

Без фотосинтетического фосфорилирования реакции ассимиляции в темновой фазе фотосинтеза невозможны.

фотосинтез является

Нюансы транспортировки нециклического типа

Процесс заключается в восстановлении НАДФ+ и образовании НАДФ*Н. Механизм основан на передаче электрона ферредоксину, его восстановительной реакцией и последующим переходом к НАДФ+ с дальнейшим восстановлением до НАДФ*Н.

Видео: Просто о сложном - фотосинтез



В итоге электроны, которые потеряли пигмент 700, восполняются благодаря электронам воды, которая разлагается под световыми лучами в фотосистеме 2.

Нециклический путь электронов, протекание которого также подразумевает световой фотосинтез, осуществляется посредством взаимодействия обеих фотосистем между собой, связывает их электронно-транспортные цепи. Световая энергия направляет поток электронов обратно. При транспортировке от фотохимического центра 1 к центру 2 электроны теряют часть своей энергии в связи с аккумуляцией в качестве протонного потенциала на мембранной поверхности тилактоидов.

В темновой фазе фотосинтеза процесс создания потенциала протонного типа в транспортировочной цепи электрона и его эксплуатация для образования АТФ в хлоропластах практически полностью идентичен с таким же процессом в митохондриях. Но особенности все же присутствуют. Тилактоидами в данной ситуации выступают митохондрии вывернутые на изнаночную сторону. Это и является главной причиной того, что электроны и протоны движутся через мембрану в противоположном направлении относительно течения переноса в мембране митохондриальной. Электроны транспортируются к наружной стороне, а протоны накапливаются во внутренней части матрикса тилактоидного. Последний принимает только положительный заряд, а наружная мембрана тилактоида – отрицательный. Из этого следует, что путь градиента протонного типа противоположен его пути в митохондриях.

Следующей особенностью можно назвать большой уровень рН в потенциале протонов.

Третьей особенностью является наличие в тилактоидной цепи только двух участков сопряжения и как следствие соотношение молекулы АТФ к протонам равняется 1:3.

Вывод

На первой стадии фотосинтез является взаимодействием световой энергии (искусственной и неискусственной) с растением. Реагируют на лучи зеленые вещества – хлорофиллы, большая часть которых содержится в листьях.

фотосинтез углеводов

Образование АТФ и НАДФ*Н - результат такой реакции. Эти продукты необходимы для протекания темновых реакций. Следовательно, световая стадия – обязательный процесс, без которого не состоится вторая стадия - темновая.

Темновая стадия: суть и особенности

Темновой фотосинтез и его реакции представляют собой процедуру углекислоты в вещества органического происхождения с получением углеводов. Осуществление таких реакций происходит в строме хлоропласта и активное участие в них принимают продукты первой стадии фотосинтеза – световой.

В основе механизма темновой стадии фотосинтеза положен процесс ассимиляции диоксида углерода (еще называется фотохимическим карбоксилированием, циклом Кальвина), который характеризуется цикличностью. Состоит из трех фаз:

  1. Карбоксилирование – присоединение СО2.
  2. Восстановительная фаза.
  3. Фаза регенерации рибулозодифосфата.

Рибулофосфат – сахар с пятью атомами углерода - поддается процедуре фосфорилирования за счет АТФ, в результате чего образуется рибулозодифосфат, который далее подвергается карбоксилированию благодаря соединению с СО2 продуктом с шестью углеродами, которые мгновенно разлагаются при взаимодействии с молекулой воды, создавая две молекулярные частицы кислоты фосфоглицериновой. Потом эта кислота проходит курс полного восстановления при осуществлении ферментативной реакции, для которой обязательно присутствие АТФ и НАДФ с образованием сахара с тремя углеродами – трехуглеродного сахара, триоза или альдегида фосфоглицеринового. Когда два таких триоза конденсируются, получается молекула гексозы, которая может стать составной частью молекулы крахмала и отлаживаться про запас.

Эта фаза завершается тем, что во время процесса фотосинтеза происходит поглощение одной молекулы СО2 и использование трех молекул АТФ и четырех атомов Н. Гексозофосфат поддается реакциям пентозофосфатного цикла, в результате чего происходит регенерация рибулозофосфата, который может вновь воссоединиться с другой молекулой углеродной кислоты.

Реакции карбоксилирования, восстановления, регенерации нельзя назвать специфическими исключительно для клетки, в которой протекает фотосинтез. Что такое «однородное» протекание процессов, тоже не скажешь, поскольку отличие все же существует – при восстановительном процессе используется НАДФ*Н, а не НАД*Н.

Присоединение СО2 рибулозодифосфатом подвергается катализации, которую обеспечивает рибулозодифосфаткарбоксилаза. Продуктом реакции является 3-фосфоглицерат, восстанавливающийся за счет НАДФ*Н2 и АТФ до глицеральдегид-3-фосфата. Процесс восстановления катализируется глицеральдегидом-3-фосфат-дегидрогеназом. Последний легко превращается в дигидроксиацетонфосфат. Происходит образование фруктозобисфосфата. Часть его молекул принимает участие в регенерирующем процессе рибулозодифосфата, замыкая цикл, а вторая часть эксплуатируется для создания запасов углеводов в клетках фотосинтеза, то есть имеет место фотосинтез углеводов.

Энергия света необходима для фосфорилирования и синтеза веществ органического происхождения, а энергия окисления органических веществ необходима для окислительного фосфорилирования. Именно поэтому растительность обеспечивает жизнь животным и иным организмам, которые относятся к гетеротрофным.

фотосинтез в клетке

Фотосинтез в клетке растений происходит именно таким образом. Его продуктом являются углеводы, необходимые для создания углеродных скелетов множества веществ представителей мира флоры, которые имеют органическое происхождение.

Вещества азоторганического типа усваиваются в фотосинтезирующих организмах за счет восстановления нитратов неорганических, а сера – за счет восстановления сульфатов до сульфгидрильных групп аминокислот. Обеспечивает образование белков, нуклеиновых кислот, липидов, углеводов, кофакторов именно фотосинтез. Что такое «ассорти» веществ жизненно важно для растений, уже подчеркивалось, а вот о продуктах вторичного синтеза, которые являются ценными лекарственными веществами (флавоноиды, алкалоиды, терпены, полифенолы, стероиды, оргкислоты и другие), не было сказано ни слова. Следовательно, без преувеличения можно сказать, что фотосинтез – залог жизни растений, животных и людей.



Внимание, только СЕГОДНЯ!


Поделись в соцсетях:
Оцени статью:


Похожее
» » » Фотосинтез - что такое? Стадии фотосинтеза. Условия фотосинтеза