Углерод технический, его получение

Технический углерод (ГОСТ 7885-86) – вид промышленных углеродных продуктов, используемый в основном при производстве резины как наполнитель, усиливающий ее полезные эксплуатационные свойства. В отличие от кокса и пека, состоит почти из одного углерода, по виду напоминает сажу.

углерод технический

Область применения

Примерно 70 % выпускаемого техуглерода используют для изготовления шин, 20 % – для производства резино-технических изделий. Также углерод технический находит применение в лакокрасочном производстве и получении печатных красок, где он выполняет роль черного пигмента.

Еще одна область применения – производство пластмасс и оболочек кабелей. Здесь продукт добавляют в качестве наполнителя и придания изделиям специальных свойств. В небольших объемах применяется техуглерод и в других отраслях промышленности.

производители технического углерода

Характеристика

Технический углерод – продукт процесса, включающего новейшие инженерные технологии и методы контроля. Благодаря своей чистоте и строго определенному набору физических и химических свойств, он не имеет ничего общего с сажей, образующейся как загрязненный побочный продукт в результате сжигания угля и мазута, или при работе неотрегулированных двигателей внутреннего сгорания. По общепринятой международной классификации техуглерод обозначается Carbon Black (черный углерод в переводе с английского языка), сажа по-английски - soot. То есть эти понятия в настоящее время, никоим образом не смешиваются.

Эффект усиления за счет наполнения каучуков техуглеродом имел для развития резиновой промышленности не меньшее значение, чем открытие явления вулканизации каучука серой. В резиновых смесях углерод из большого количества при­-меняемых ингредиентов по массе занимает второе место после каучука. Влияние же качественных показателей техуглерода на свойства резиновых изделий значительно больше, нежели качественных показателей основного ингредиента – каучука.

Усиливающие свойства

Улучшение физических свойств материала за счет введения наполнителя называется усилением (армированием), а такие наполнители называются усили­-телями (техуглерод, осажденная окись кремния). Среди всех усилителей поистине уникальными характеристиками обладает углерод технический. Даже до вулканизации он связывается с каучуком, и эту смесь невоз­-можно полностью разделить на carbon black и каучук при помощи растворителей.

Прочность резин, полученных на основе важнейших эластомеров:

Эластомер

Прочность при растяжении, МПа

Ненаполненный вулканизат

Вулканизат с наполнением техуглеродом

Бутадиенстирольный каучук

3,5

Видео: Лихолобов В.А. Научно- технические аспекты получения и применения технического углерода

24,6

Бутадиеннитрильный каучук

4,9

28,1

Этиленпропиленовый каучук

3,5

21,1

Полиакрилатный каучук

2,1

Видео: Завод Технический Углерод . S.t.a.l.k. c GBlack .

17,6

Полибутадиеновый каучук

5,6




21,1

В таблице показаны свойства вулканизатов, полученных из различных видов каучука без наполнения и наполненных техуглеродом. Из приведенных данных видно, как существенно влияет наполнение ­-углеродом на показатель прочности резин при растяжении. Кстати, другие дисперсные порошки, применяемые в резиновых смесях для придания нужной окраски или удешев­-ления смеси — мел, каолин, тальк, окись железа и другие не обладают усиливаю­-щими свойствами.

технический углерод

Структура

Чистые природные углероды – это алмазы и графит. Они имеют кристаллическую структуру, значительно отличаю­-щуюся одна от другой. Методом дифракции рентгеновских лучей установлено сходство в струк­-туре натурального графита и искусственного материала carbon black. Атомы углерода в графи­-те образуют большие слои сконденсированных ароматических кольцеобразных систем, с межатомным расстоянием 0,142 нм. Эти графитовые слои сконденсированных ароматических систем при­-нято называть базисными плоскостями. Расстояние между плоскостями строго определенное и составляет 0,335 нм. Все слои расположе­-ны параллельно относительно друг другу. Плотность графита составляет 2,26 г/см3.

В отличие от графита, обладающего трехмерной упорядоченностью, углерод технический характеризуется только двухмерной упорядоченностью. Состоит он из хорошо развитых графитовых плоскостей, расположенных приблизительно параллельно друг другу, но смещенным по отношению к смежным слоям – то есть, плоскости произвольно ориентированы в отношении норма­-ли.

Образно структуру графита сравнивают с аккуратно сложенной коло­-дой карт, а структуру техуглерода с колодой карт в которой карты сдвинуты. В нем межплоскостное расстояние больше, чем у графита и составляет 0,350-0,365 нм. Поэтому плотность техуглерода ниже плотности графита и находится в пределах 1,76-1,9 г/см3, в зависимости от марки (чаще всего 1,8 г/см3).

Окрашивание

Пигментные (окрашивающие) марки технического углерода используются в производстве типографских красок, покрытий, пластмасс, волокон, бумаги и строительных материалов. Их классифицируют на:

  • высокоокрашивающий техуглерод (НС);
  • среднеокрашивающий (МС);
  • нормальноокрашивающий (RC);
  • низкоокрашивающий (LC).

Третья буква обозначает способ получения – печной (F) или канальный (С). Пример обозначения: HCF – высокоокрашивающий печной техуглерод (Hiqh Colour Furnace).

технический углерод ГОСТ

Окрашивающая способность продукта связана с размером его частиц. В зависимости от их размера углерод технический подразделяется по группам:

Средний размер частиц, нм

Марка печного техуглерода

10-15

HCF

16-24

MCF

25-35

RCF

>36

LCF

Классификация

Технический углерод для резин по степени усиливающего эффекта подразделяют на:

  • Высокоусиливающий (протекторный, твердый). Выделяется повышенной прочностью и сопротивляемостью истиранию. Размер частиц мелкий (18-30 нм). Применяют в транспортерных лентах, протекторах шин.
  • Полуусиливающий (каркасный, мягкий). Размер частиц средний (40-60 нм). Применяют в разноплановых резинотехнических изделиях, каркасах шин.
  • Низкоусиливающий. Размер частиц крупный (свыше 60 нм). В шинной промышленности используется ограниченно. Обеспечивает необходимую прочность при сохранении высокой эластичности в резинотехнических изделиях.

Полная классификация техуглерода дана в стандарте ASTM D1765-03, принятом всеми мировыми производителями продукта и его потребителями. В нем классификация, в частности, ведется по диапазону удельной площади поверхности частиц:

№ группы

Средняя удельная площадь поверхности по адсорбции азота, м2

Видео: Технический Углерод - Подготовка Сырья

0

>150

1

121-150



2

100-120

3

70-99

4

50-69

5

40-49

6

33-39

7

21-32

8

11-20

9

0-10

Производство технического углерода

Различают три технологии получения промышленного техуглерода, в которых используется цикл неполного сжигания углеводородов:

Видео: Большой скачок. Самый важный элемент. Углерод.

  • печной;
  • канальный;
  • ламповый;
  • плазменный.

Также существует термический метод, при котором при высоких температурах происходит разложение ацетилена или природного газа.

производство технического углерода

Многочисленные марки, получаемые за счет различных технологий, обладают разнообразными характеристиками.

Видео: Сажа (технический углерод) от ЧП "ЧеркасиВапноПостач"

Технология изготовления

Теоретически возможно получение технического углерода всеми перечисленными способами, однако более 96 % производимого продукта получают печным спо­-собом из жидкого сырья. Метод позволяет получать разнообразные марки техуглерода с определенным набором свойств. Например, на Омском заводе технического углерода по данной технологии производится более 20 марок техуглерода.

Общая технология такова. В реактор, футерованный высокоогнеупорными материалами, подается природный газ и нагретый до 800 °С воздух. За счет сжигания природного газа образуются продукты полного сгорания с температурой 1820-1900 °С, содержа­-щие определенное количество свободного кислорода. В высокотемпературные продукты полного сгорания впрыскивается жидкое углеводородное сырье, предварительно тщательно перемешанное и нагретое до 200-300 °С. Пиролиз сырья происходит при строго контролируемой температуре, которая в зависи­-мости от марки выпускаемого техуглерода имеет различные значения от 1400 до 1750 °С.

На определенном расстоянии от места подачи сырья термоокисли­-тельная реакция прекращается посредством впрыска воды. Образовавшиеся в результате пиролиза технический углерод и газы реакции поступают в воздухоподогрева­-тель, в котором они отдают часть своего тепла воздуху, используемому в про­-цессе, при этом температура углеродогазовой смеси понижается от 950-1000 °С до 500-600 °С.

После охлаждения до 260-280 °С за счет дополнительного впрыска воды смесь технического углерода и газов направляется в рукавный фильтр, где тех­-нический углерод отделяется от газов и поступает в бункер фильтра. Выделенный технический углерод из бункера фильтра по трубопро­-воду газотранспорта подается вентилятором (турбовоздуходувкой) в от­-деление гранулирования.

получение технического углерода

Производители технического углерода

Мировое производство техуглерода превышает 10 млн тонн. Такая большая потребность в продукте объясняется, прежде всего, его уникальными усиливающими свойствами. Локомотивами отрасли являются:

  • Aditya Birla Group (Индия) – около 15 % рынка.
  • Cabot Corporation (США) – 14 % рынка.
  • Orion Engineered Carbons (Люксембург) – 9 %.

Крупнейшие российские производители углерода:

  • ООО «Омсктехуглерод» – 40 % российского рынка. Заводы в Омске, Волгограде, Могилеве.
  • ОАО «Ярославский технический углерод» – 32 %.
  • ОАО «Нижнекамсктехуглерод» – 17 %.


Внимание, только СЕГОДНЯ!


Поделись в соцсетях:
Оцени статью:


Похожее
» » » Углерод технический, его получение