Реактор на быстрых нейтронах

Видео: БН-800. Реактор на быстрых нейтронах

Хотя в основе работы любого ядерного реактора лежит деление радиоактивного вещества, сопровождающееся выделением температуры, в зависимости от конструктивных особенностей различают две их разновидности - реактор на быстрых нейтронах и медленных, иногда называемых тепловыми.

Видео: Энциклопедия атома. Пропуск в будущее

Нейтроны, выделившиеся в процессе реакции, обладают очень высокой начальной скоростью, теоретически преодолевая за секунду тысячи километров. Это - быстрые нейтроны. В процессе перемещения из-за столкновения с атомами окружающей материи их скорость замедляется. Одним из простых и доступных способов искусственно снизить скорость является размещение у них на пути воды или графита. Таким образом, научившись регулировать уровень кинетической энергии этих частиц, человек получил возможность создать два типа реакторов. Свое название «тепловые» нейтроны получили благодаря тому, что скорость их перемещения после замедления практически соответствует естественной скорости внутриатомного теплового движения. В численном эквиваленте она составляет до 10 км в секунду. Для микромира это значение относительно низко, поэтому захват частиц ядрами происходит очень часто, вызывая новые витки деления (цепную реакцию). Следствием этого является необходимость в гораздо меньшем количестве делящегося вещества, чем не могут похвастаться реакторы на быстрых нейтронах. Кроме того, снижаются некоторые другие накладные расходы. Данный момент как раз и объясняет, почему большинство работающих ядерных станций используют именно медленные нейтроны.




Казалось бы – если все просчитано, то зачем нужен реактор на быстрых нейтронах? Оказывается, не все так однозначно. Важнейшее преимущество таких установок – способность обеспечивать ядерным топливом другие реакторы, а также создавать увеличенный цикл деления. Остановимся на этом более подробно.

Видео: Быстрые нейтроны.

Реактор на быстрых нейтронах более полно использует загруженное в активную зону топливо. Начнем по порядку. Теоретически, использовать в качестве горючего можно лишь два элемента: плутоний-239 и уран (изотопы 233 и 235). В природе встречается лишь изотоп U-235, но его совсем мало, чтобы говорить о перспективности такого выбора. Указанные уран и плутоний – это производные от тория-232 и урана-238, которые образуются в результате воздействия на них потока нейтронов. А вот уже эти два радиоактивных материала гораздо чаще встречаются в естественной форме. Таким образом, если бы удалось запустить самоподдерживающуюся цепную реакцию деления U-238 (или плутония-232) , то ее результатом стало бы возникновение новых порций делящегося вещества – урана-233 или плутония-239. При замедлении нейтронов до тепловой скорости (классические реакторы) такой процесс невозможен: топливом в них служат именно U-233 и Pu-239, а вот реактор на быстрых нейтронах позволяет выполнить такое дополнительное преобразование.



Процесс выглядит следующим образом: загружаем уран-235 или торий-232 (сырье), а также порцию урана-233 или плутония-239 (топливо). Последние (любой из них) обеспечивают поток нейтронов, необходимый для «зажигания» реакции в первых элементах. В процессе распада выделяется тепловая энергия, преобразуемая генераторами станции в электричество. Быстрые нейтроны воздействуют на сырье, преобразуя эти элементы в…новые порции топлива. Обычно количества сгоревшего и образовавшегося топлива равны, но если сырья загружено больше, то генерация новых порций делящегося материала происходит даже быстрее, чем расход. Отсюда второе название таких реакторов – размножители. Излишки топлива можно использовать в классических медленных разновидностях реакторов.

Видео: Япония запустила реактор на быстрых нейтронах

Недостаток моделей на быстрых нейтронах в том, что перед загрузкой уран-235 должен быть обогащен, что требует дополнительных финансовых вложений. Кроме того, сама конструкция активной зоны более сложна.



Внимание, только СЕГОДНЯ!


Поделись в соцсетях:
Оцени статью:


Похожее
» » » Реактор на быстрых нейтронах